

Practical Statecharts

in C/C++

Quantum Programmming

for Embedded Systems

Miro Samek, Ph.D.

San Francisco, CA • New York, NY • Lawrence, KS

Published by CMP Books

an imprint of CMP Media LLC

Main office: 600 Harrison Street, San Francisco, CA 94107 USA

Tel: 415-947-6615; fax: 415-947-6015

Editorial office: 1601 West 23rd Street, Suite 200, Lawrence, KS 66046 USA

www.cmpbooks.com

email: books@cmp.com

Designations used by companies to distinguish their products are often claimed as trademarks. In
all instances where CMP Books is aware of a trademark claim, the product name appears in initial
capital letters, in all capital letters, or in accordance with the vendor’s capitalization preference.
Readers should contact the appropriate companies for more complete information on trademarks
and trademark registrations. All trademarks and registered trademarks in this book are the prop-
erty of their respective holders.

Copyright © 2002 by CMP Books, except where noted otherwise. Published by CMP Books, CMP
Media LLC. All rights reserved. Printed in the United States of America. No part of this publica-
tion may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

The programs in this book are presented for instructional value. The programs have been carefully
tested, but are not guaranteed for any particular purpose. The publisher does not offer any war-
ranties and does not guarantee the accuracy, adequacy, or completeness of any information herein
and is not responsible for any errors or omissions. The publisher assumes no liability for damages
resulting from the use of the information in this book or for any infringement of the intellectual
property rights of third parties that would result from the use of this information.

Acquisitions editor: Robert Ward
Technical editor: Jeff Claar
Editors: Catherine Janzen, Julie McNamee, and Rita Sooby
Layout design & production: Justin Fulmer
Managing editor: Michelle O’Neal
Cover art design: Rupert Adley and Damien Castaneda

Distributed to the book trade in the U.S. by: Distributed in Canada by:

Publishers Group West Jaguar Book Group

1700 Fourth Street 100 Armstrong Avenue

Berkeley, CA 94710 Georgetown, Ontario M6K 3E7 Canada

1-800-788-3123 905-877-4483

For individual orders and for information on special discounts for quantity orders, please contact:
CMP Books Distribution Center, 6600 Silacci Way, Gilroy, CA 95020
Tel: 1-800-500-6875 or 408-848-3854; fax: 408-848-5784
email: cmp@rushorder.com; Web: www.cmpbooks.com

Printed in the United States of America

02 03 04 05 06 5 4 3 2

ISBN: 1-57820-110-1

Table of Contents

Preface. vii

PART I STATECHARTS . 1

Chapter 1 Whirlwind Tour of Quantum Programming 3
1.1 The Ultimate Hook — Anatomy of a GUI Application 4
1.2 A Better Way of Programming — A Calculator That Works 6
1.3 Object-Oriented Analogy .16
1.4 Quantum Analogy .19
1.5 Summary .20

Chapter 2 A Crash Course in Statecharts 23
2.1 The Essence of Finite State Machines .24
2.2 The Essence of UML Statecharts .30
2.3 Examples of State Models .44
2.4 Summary .52

Chapter 3 Standard State Machine Implementations 55
3.1 State Machine Interface .56
3.2 Nested switch Statement .57
3.3 State Table .60
3.4 State Design Pattern .65
3.5 Optimal FSM Implementation .69
iii

iv

Table of Contents

3.6 State Machines and C++ Exception Handling 73
3.7 Role of Pointer-to-Member Functions . 73
3.8 Implementing Guards, Junctions, and Choice Points 76
3.9 Implementing Entry and Exit Actions . 76
3.10 Dealing with State Hierarchy . 77
3.11 Summary . 79

Chapter 4 Implementing Behavioral Inheritance 81
4.1 Structure . 83
4.2 An Annotated Example . 94
4.3 Heuristics and Idioms . 101
4.4 The Event Processor . 106
4.5 C Implementation . 120
4.6 Caveats . 126
4.7 Summary . 128

Chapter 5 State Patterns .131
5.1 Ultimate Hook . 133
5.2 Reminder . 138
5.3 Deferred Event . 144
5.4 Orthogonal Component . 149
5.5 Transition to History . 160
5.6 Summary . 164

Chapter 6 Inheriting State Models .167
6.1 Statechart Refinement Example in C++ 168
6.2 Statechart Refinement Example in C . 177
6.3 Caveats . 180
6.4 Summary . 185

Table of Contents

v

PART II QUANTUM FRAMEWORK 187

Chapter 7 Introducing the Quantum Framework 189
7.1 Conventional Approach to Multithreading 191
7.2 Computing Model of the QF .197
7.3 Roles of the QF .206
7.4 Summary .212

Chapter 8 Design of the Quantum Framework 215
8.1 Embedded Real-Time Systems .216
8.2 Handling Errors and Exceptional Conditions218
8.3 Memory Management .225
8.4 Mutual Exclusion and Blocking .230
8.5 Passing Events .235
8.6 Active Objects .248
8.7 Initialization and Cleanup .253
8.8 Time Management .255
8.9 QF API Quick Reference .258
8.10 Summary .263

Chapter 9 Implementations of the Quantum Framework . . .265
9.1 The QF as a Parnas Family .266
9.2 Code Organization .267
9.3 Common Elements .272
9.4 DOS: The QF without a Multitasking Kernel283
9.5 Win32: The QF on the Desktop .290
9.6 RTKernel-32: The QF with a Preemptive Priority-Based Kernel . .295
9.7 Summary .302

Chapter 10 Sample Quantum Framework Application . . . 305
10.1 Generating a QF Application .306
10.2 Rules for Developing QF Applications .315
10.3 Heuristics for Developing QF Applications 317
10.4 Sizing Event Queues and Event Pools .318
10.5 System Integration .323
10.6 Summary .323

vi

Table of Contents

Chapter 11 Conclusion .325
11.1 Key Elements of QP . 326
11.2 Propositions of QP . 329
11.3 An Invitation . 333

Appendix A “C+” — Object-Oriented Programming in C . . .335
A.1 Abstraction . 336
A.2 Inheritance . 339
A.3 Polymorphism . 341
A.4 Costs and Overheads . 349
A.5 Summary . 350

Appendix B Guide to Notation .353
B.1 Class Diagrams . 353
B.2 Statechart Diagrams . 356
B.3 Sequence Diagrams . 357
B.4 Timing Diagrams . 357

Appendix C CD-ROM .359
C.1 Source Code Structure . 361
C.2 Installation . 361
C.3 Answers to the Exercises . 362
C.4 Resources . 362

Bibliography .365

Index .371

What’s on the CD? .400

Preface

What we do not understand we do not possess.
— Goethe

Almost two decades ago, David Harel invented statecharts as a powerful way to
describe complex reactive (event-driven) systems [Harel 87]. Subsequently, state-
charts have gained almost universal acceptance as a superior formalism and have
been adopted as components of many software methodologies, most notably as part
of the Unified Modeling Language (UML). Nevertheless, the use of statecharts in
everyday programming has grown slowly. Among the many reasons, the most impor-
tant is that statecharts have always been taught as the use of a particular tool, rather
than the way of design.

This heavy reliance on tools has affected the software community in three ways.
First, the aggressive marketing rhetoric of tool vendors has set unrealistically high
expectations for purely visual programming and fully automatic code generation.
Second, the rhetoric of the argument for automatic code synthesis depreciated the
role of manual coding. Finally, the accidental association between statecharts and
CASE (computer-aided software engineering) tools gave rise to a misconception that
the more advanced UML concepts, such as statecharts, are only viable in conjunction
with sophisticated code-synthesizing tools.

The reality is that CASE tools haven’t made manual coding go away. Even the
best-in-class code-synthesizing tools can generate only a fraction of the software (the
so-called housekeeping code [Douglass 99]). The difficult, application-specific code
vii

viii

Preface

still must be written explicitly (although it is typically entered through the dialog
boxes of a tool rather than typed into a programming editor). This also means that
the models are not purely visual, but a mixture of diagrams and textual information
(mostly snippets of code in a concrete programming language).

Moreover, for many projects, a design automation tool is not the best solution.
The fundamental problem, as always, is the cost versus the return. Even if you ignore
the dollar cost of the tool, you must ask whether the benefits outweigh the com-
pounded complexity of the problem and the tool. The complete cost function must
also include training and adaptation of the existing infrastructure to the tool (e.g.,
the compiler/linker/debugger tool chain, the host and target operating systems, the
directory structure and file names, version control, and the software build process).
After weighing all the pros and cons and struggling with a tool for a while, many
teams notice that they spend more time fighting the tool than solving problems. For
many developers, the tool simply can’t pull its own weight and ends up as shelfware
or a not-so-simple drawing tool.

Mission

My primary mission in this book is to offer a simple, lightweight alternative to a
design automation tool by providing concrete, efficient, and proven implementations
of statecharts that every practitioner reasonably proficient in C or C++ can start
using within days.

To achieve these goals, I describe the major components of every typical code-syn-
thesizing tool.
• The techniques needed to implement and use UML statecharts — the main con-

structive element in the UML specification (presented in Part I).
• A real-time application framework — a complete software infrastructure for exe-

cuting statecharts, tailored to embedded real-time systems and based on active
objects and asynchronous event passing (presented in Part II).
At first glance, the approach can be classified as a set of common elaborative tech-

niques for implementing UML models. Even as such, it spares many practitioners
from reinventing the wheel. In this book, I present ready-to-use, generic, and efficient
elements that you can use to implement and execute hierarchical state machines; gen-
erate, queue, and dispatch events; integrate state machines with real-time operating
systems (RTOSs); and much more. These software elements vary little from system
to system but are hard to find in the literature. It’s even harder to make them work
well together. The value of this book is similar to that of a multivitamin pill: in one
fell swoop (or a few chapters in this case), you get all the necessary ingredients, well
balanced and complementing each other. If you use this book only in this manner,
my most important goal is already accomplished.

Why Quantum Programming?

ix

Why Quantum Programming?

By providing concrete implementations of such fundamental concepts as statecharts
and statechart-based computing models, the book lays the groundwork for a new
programming paradigm, which I propose to call Quantum Programming (QP). I
chose this name to emphasize the striking and fundamental analogy between reactive
software systems and microscopic objects. As the laws of quantum mechanics
describe, at the fundamental level, most microscopic objects (such as elementary par-
ticles, nuclei, atoms, and molecules) exhibit state behavior. Quantum objects are, in
fact, little state machines, which spend their lives in strictly defined, discrete quantum
states and can change state only in certain ways via uninterruptible transitions
known as quantum leaps. Correspondingly, QP models state transitions with run-to-
completion (RTC) steps. The only way quantum systems interact with one another is
through an exchange of field quanta (intermediate vector bosons), which are media-
tors of fundamental forces.1 Similarly, QP requires reactive systems to interact only
by exchanging event instances. I explain more about this quantum analogy in Chap-
ters 1, 2, and 7.

As a programming paradigm, QP has much more to offer than merely the snip-
pets of code published in this book. I see and use QP as a set of techniques that
increases the level of abstraction of a conventional programming language (such as C
or C++). The additional abstractions in QP allow me to efficiently model reactive
systems directly in C++ or C. The role of QP can be compared to that of an object-
oriented (OO) programming language. Just as Smalltalk, C++, or Java enable object-
oriented programming (OOP) through direct support for the three fundamental OO
design meta-patterns — abstraction, inheritance, and polymorphism — QP enables
statechart modeling directly in C or C++ through another fundamental meta-pattern:
the hierarchical state machine (HSM). Currently, the fundamental HSM pattern is an
external add-on to C++ or C, but there is no reason it couldn’t be natively supported
by a quantum programming language in the same way that abstraction, inheritance,
and polymorphism are natively supported by OO programming languages. (Indeed,
in Appendix A, you see that OOP can be supported as an “add–on” in procedural
languages such as C by explicitly applying the three fundamental OO patterns. I sub-
sequently use this augmented C, which I call “C+”, to develop the C implementation
of the HSM pattern.)

The relationship between QP and OOP is interesting. On one hand, the most
important aspects of QP, such as the HSM design pattern and the asynchronous
communication paradigm, are orthogonal to OOP, which is an indication that these
aspects of QP might be fundamental. On the other hand, however, these concepts
work best when applied with OOP. In fact, a deep analogy exists between OOP and

1. For example, photons mediate the electromagnetic force, gluons the strong force, and bosons W±
and Zo the weak interactions.

x

Preface

QP, which I discuss in Chapter 1. In this sense, QP builds on top of OOP, comple-
ments it, and extends it into the domain of reactive systems.

Most of the concepts that form QP are not new, but, rather, draw on a broad range
of long-known techniques and methodologies from programming and other disci-
plines such as quantum field theory. Most inspiring to me was the real-time object-ori-
ented modeling (ROOM) method described by Bran Selic and colleagues [Selic+ 94].
Specifically, the real-time framework, or Quantum Framework, first began as a radi-
cally simplified ROOM virtual machine. Other influences were the classical Gang of
Four design patterns [Gamma+ 95], the UML specification [OMG 01] (especially the
state machine package), the original works of Harel [Harel 87, Harel+ 98], and books
by Bruce Douglass [Douglas 99, Douglas 99a]. The Douglass writings in many ways
are on the opposite end of the spectrum from QP, because QP offers mostly alterna-
tive views and complementary techniques to those he describes. For example, the state
patterns he pioneered rely heavily on orthogonal regions, whereas QP shows how to
implement some of these more elegantly using state hierarchy (Chapter 5).

For over four years, I have been using and refining QP in real-life projects — for
example, in hard real-time implementations of GPS receivers. I am excited and
thrilled by the potential of this approach to the point that I wrote this book so I
could share QP with the largest audience I can reach. However, I am realistic — I do
not see QP as a silver bullet. QP does not promise you the royal road, as do some
design automation tools; however, it offers arguably the fastest road to better
designed, safer, and more efficient event-driven software, because nothing stands
between you and the solution. When you start using QP, you’ll find, as I did, that
your problems change. You no longer wrestle with convoluted if or switch state-
ments; rather, you spend more time thinking about how to apply state patterns and
how to partition your problem into active objects. Nonetheless, even with QP (or
any CASE tool, for that matter), programming reactive systems remains difficult
because it is by nature difficult. As Frederick Brooks [Brooks 87] notes in his classic
essay “No Silver Bullet,” you can only attack the accidental difficulties and can’t do
much about the essential ones, at least not in software alone. In this context, QP
exactly follows Brooks’ advice — to attack and remove the accidental difficulties
associated with developing event-driven software.

QP versus XP and Other Agile Methodologies

QP is not a programming methodology; it is a set of concrete techniques for model-
ing and implementing reactive systems. Nevertheless, the QP approach is an expres-
sion of a basic programming philosophy, which is closely aligned with the recent
trends in software development known collectively as light or agile methodologies.
Some of these technologies include eXtreme Programming (XP), Crystal methodolo-
gies, SCRUM, Adaptive Software Development, Feature-Driven Development, and

QP versus XP and Other Agile Methodologies

xi

Agile Modeling. The basic philosophy behind the new approaches is best summa-
rized in the “Agile Manifesto” [Fowler 01], in which the “seventeen anarchists”
agree to value (1) individuals and interactions over processes and tools and (2) work-
ing software over comprehensive documentation.

In the context of QP, valuing individuals and interactions over processes and tools
means putting emphasis on understanding the underlying implementations and
mechanisms rather than on hiding the complexity behind a tool (the practice that
Anders Hejlsberg [Hejlsberg 01] denounced as “simplexity–complexity wrapped in
something simple”). Real-life experience has shown repeatedly that if an individual
understands the underlying implementation model, then he or she can code more
efficiently and work with greater confidence. For example, determining which
actions fire in which sequence in a nontrivial state transition is not something you
should guess at or discover by running a tool-supported animation of your state-
chart. The answer should come from your understanding of the underlying imple-
mentation (discussed in Chapters 3 and 4). Even if you decide to use a design
automation tool and even if your particular tool uses slightly different statechart
implementation techniques than those I discuss in this book, you will still be a better,
more productive, and confident user of the tool because of your understanding of the
fundamental mechanisms.

In addition to putting value on individuals and interactions by explaining low-
level fundamental software patterns, QP also offers powerful high-level metaphors,
such as the quantum-mechanical and object-oriented analogies. A metaphor is valu-
able because it promotes the conceptual integrity of a software product and provides
a common vocabulary, which dramatically improves communication among all of
the stakeholders. Agile methodologies recognize the importance of such metaphors
(e.g., XP proposes the development of a metaphor as a key practice).

As an elaborative approach, QP values working software over comprehensive
documentation. In fact, QP offers nothing but the working code. I have made every
attempt to provide only executable code, so that you can try out virtually every list-
ing and code snippet you find in this book, as well as the code available only on the
accompanying CD-ROM. Because only executable code is testable, this aspect of QP
goes hand-in-hand with the requirement for continuous testing, which is inherent to
all agile methodologies.

In addition to offering techniques for creating executable code, QP also offers
highly readable, self-documenting code. For example in Chapter 4, I give directions
on how to make the structure of a statechart clearly apparent from the code and
almost equivalent to a UML state diagram. This is not to say that QP abandons UML
diagrams or makes them obsolete. To the contrary, in this book, you will see quite a
few diagrams that follow UML notation strictly (although because I used a simple
drawing tool, they cannot be called UML-compliant). When it comes to diagrams

xii

Preface

and other visual models, QP shares the commonsense view of Agile Modeling
[Ambler 01]. The most important role of visual models is to help you think through
the designs and communicate them to programmers, customers, or management. For
that purpose, simple tools like paper and pencil, whiteboard, or sticky notes are usu-
ally sufficient. It is also OK to discard the visual models after they have fulfilled their
purpose. The specific value of visual modeling lies in tapping the potential of high
bandwidth spatial intelligence, as opposed to lexical intelligence used with textual
information.

Incomplete, disposable visual models, however, can’t be used for code synthesis.
In this respect, the agile approach fails to take advantage of the constructive aspect
of some visual representations, such as UML statecharts. QP complements agile
methodologies by enabling high-level modeling directly at the code level. With the
concrete, ready-to-use building blocks provided by QP, you can construct, compile,
and execute concurrent state models rapidly, even if they are nothing more than
vastly incomplete skeletons. As you will see in Chapter 4, you can change the state
machine topology (e.g., add, remove, or rearrange states and transitions) at any
stage, even late in the process, by changing a few lines of code and recompiling. Then
you can test your executable model on the host or target environments. Plenty of
such executable models are included throughout this book. In that way, you can
quickly try out many alternatives before committing to any one of them. This pro-
cess is rightly called modeling, rather than coding, because your goal isn’t the gener-
ation of a final product or even a prototype, but rather the fast exploration of your
design space.

Admittedly with such lightweight modeling, you lose the benefits of spatial intelli-
gence. As mentioned earlier, modeling at the code level does not preclude using UML
diagrams or low-fidelity sticky notes as models of user interfaces. Indeed, spatial
intelligence is best at grasping high-level structures and patterns when the models are
relatively high level and uncluttered. As the models become more detailed, lexical
intelligence usually takes over anyway because, in the end, “programming is all
about text” [Hejlsberg 01].

Audience

This book is intended for the following computer professionals interested in reactive,
or event-driven, systems.
• Embedded programmers and consultants will find practical advice, explanations,

and plenty of code that they can use as is or modify to build event-driven soft-
ware.

• Real-time systems designers will find a lightweight alternative to heavyweight
CASE tools for modeling real-time systems. The Quantum Framework, combined

Guide to Readers

xiii

with a preemptive RTOS, can provide deterministic behavior and can be embed-
ded in commercial products.

• Users of design automation tools will better understand the inner workings of
their tools, helping them to use the tools more efficiently and confidently.

• GUI developers, interactive Web page designers, and computer game program-
mers using C or C++ will find nontrivial, working examples of how to code and
integrate UML statecharts with GUI environments such as the Microsoft Win-
dows API.

• Hardware designers exploring the extension of C or C++ with class libraries to
model SoC (System on Chip) designs will find one of the most succinct and effi-
cient implementations of hierarchical state machines.

• Graduate-level students of Computer Science or Electrical Engineering will learn
many design patterns that are backed up by numerous examples and exercises.
This book is about extending object-oriented techniques to programming reactive

systems in C++ and C. I assume that you are familiar with fundamental object-ori-
ented concepts and are reasonably proficient in one of these two languages. To bene-
fit from Part II of the book, you should be familiar with fundamental real-time
concepts. I am not assuming that you have prior knowledge of the UML specification
in general or statecharts in particular, and I introduce these concepts in a crash
course in Chapter 2.

Guide to Readers

This book has two main parts. In Part I (Chapters 1–6), I describe state machines —
what they are, how to implement them, and the standard ways or patterns of using
them. This part is generally applicable to any event-driven system, such as user inter-
faces (graphical and otherwise), real-time systems (e.g., computer games), or embed-
ded systems. In Part II (Chapters 7–11), I describe the Quantum Framework, which
is a software architecture designed specifically for embedded real-time systems.

Surveys of programmers2 consistently indicate that C and C++ clearly dominate
embedded systems programming. The vast majority (some 80 percent) of embedded
systems developers use C; about 40 percent occasionally use C++. Consequently,
every practical book genuinely intended to help embedded systems programmers
should focus on C and C++. For that reason, I consistently present two complete sets
of code: C++ and C. The C++ implementations are typically more succinct and natu-
ral because the underlying designs are fundamentally object oriented. In Appendix A,

2. For example, the Embedded Systems Programming survey (published annually by ESP magazine) or
the Annual Salary Survey (published by SD magazine).

xiv

Preface

I present a description of “C+” – a set of three design patterns (abstraction, inherit-
ance, and polymorphism), which I’ve used to code object-oriented designs in porta-
ble ANSI C. The “C+” patterns appear in many nontrivial examples throughout the
book contrasted side-by-side with C++ implementations of the same designs. If you
are interested only in C++, you can skip the C implementations on the first reading.
However, I found that understanding the underlying mechanisms of implementing
object orientation vastly improved my OO designs and allowed me to code them
with greater confidence. For that reason, you might want to study the C code, con-
centrating primarily on the “C+” specifics. Conversely, if you are interested only in
C, you should still read the explanations pertaining to C++ code. Often, I don’t
repeat clarifications for design decisions because they are the same for C++ and C. As
a C programmer, you should have no problems understanding my C++ implementa-
tions because I use only very straightforward inheritance and hardly any polymor-
phism (except in Chapter 6).

My goal is not only to give you fish (i.e., the source code) but to teach you how to
fish (i.e., to model reactive systems). Unfortunately, if you want to learn to fish, you
should be ready to sweat a little. I try to provide you with executable implementa-
tions whenever possible. I believe that nothing builds more confidence in a new tech-
nique than actually executing a piece of example code. Sometimes, I ask you to step
through a few instructions with a debugger; other times, I suggest that you make
alterations to the code and rerun it. In the end, however, it is up to you to actually do
it.

Most of the chapters in this book contain exercises. The exercises are intermixed
with the text, rather than grouped at the end of a chapter, to put them closer to the
relevant text. Most of the time, the exercises are not intended to test your compre-
hension of the chapter, but rather to suggest an alternative solution or to introduce a
new concept. I provide a complete set of answers in order to pass on as much infor-
mation as possible. If you usually skip over exercises, at least consider looking at the
answers provided on the CD-ROM so that you don’t miss the guidelines or tech-
niques I introduce there.

I describe the CD-ROM that accompanies this book in more detail in Appendix C
and the HTML browser included on the disc. Here, I want to mention that the exam-
ples (although written in portable C++ or C) are designed to run under Microsoft
Visual C++ v6.0 on a 32-bit Windows machine (9x/NT/2000). If you don’t have
Visual C++, I recommend you get a copy so that you will be able to run the examples
without redoing the makefiles, libraries, and so on. It is also important to have a
good, easy-to-use debugger.

The source code for this book is available on the CD-ROM and can be freely dis-
tributed to students by accredited colleges and universities without a license. You can
use the code as is or modify it to embed in your products, but you must obtain a

Acknowledgments

xv

Source Code Distribution License to distribute QP source code. I may choose to
assess a license fee for such situations, and you need to contact me for pricing (see
below).

I intend to continue advancing QP and am interested in any constructive feedback
you may have. I have opened a Web site devoted to promotion of this book and QP
at the URL http://www.quantum-leaps.com. I plan for this site to contain appli-
cation notes, ports of QP to different platforms, state patterns, useful links, bug
fixes, frequently asked questions and much more. Please feel free to contact me via e-
mail at miro@quantum-leaps.com.

Acknowledgments

I would like to thank Robert Ward, my acquisitions editor at CMP Books, in whom
I found an excellent editor, extremely knowledgeable software professional, and a
resonating mind. I feel very lucky that Robert accepted my book for publication and
offered his guidance throughout this book’s lengthy birthing. I couldn’t have
dreamed of a better editor for this book.

The team of CMP Books has been wonderful. It was a great pleasure to have
Michelle O’Neal as the managing editor. I’d like to thank Julie McNamee, Catherine
Janzen, and Rita Sooby, for putting up with my writing. I’m amazed how many times
they managed to turn my convoluted technical jargon into something actually read-
able. Reviewing their corrections was for me the best possible lesson in lucid writing.
I also thank Justin Fulmer, for polishing my drawings and integrating them into the
final version of the book.

I am indebted to Jeff Claar, for the technical review of the manuscript and for
scrutinizing the accompanying code. Jeff’s contributions include the complete C++
state machine implementation compliant with multiple inheritance, which is avail-
able on the companion CD-ROM.

I’d like to thank Michael Barr, for letting me publish my earlier article on the sub-
ject in the Embedded Systems Programming magazine, and for reviewing an early
copy of this book.

This book has had a long gestation, of which the actual writing was merely the
final step. I owe a lot to my former colleagues at GE Medical Systems, specifically to
John Zhang, for infecting me with his enthusiasm for design patterns and state
machines. In addition, I’d like to acknowledge my current team at IntegriNautics
Corporation–one of the highest concentrations of Ph.D.s per square foot in Silicon
Valley. I am particularly grateful to Paul Montgomery, for brainstorming many of
the ideas, unforgettable pair-programming sessions, and for patiently enduring all
my early iterations of the Quantum Framework.

xvi Preface
I wholeheartedly thank my parents, who from over 7,000 miles away were still
able to provide plenty of support and encouragement. The perseverance they instilled
in me was critical for completion of this project. Quite specially, I thank my sister
Barbara, for her faith in me and for always taking care of her “little brother”.

Most of all, however, I would like to thank my wife Kinga and our lovely daugh-
ter Marie for tolerating far too many nights and weekends, which I spent in front of
a computer rather than with them. Without their love, help, and continuous encour-
agement this book could never be finished. I love you so much!

Miro Samek
Palo Alto, California
April 2002

PART I

PART I

STATECHARTS

State machines are a superb formalism for specifying and implementing event-driven
systems that must react to incoming events in a timely fashion. The UML statecharts
represent the current state of the art in state machine theory and notation.

Part I of this book introduces the concept of statecharts, describes concrete tech-
niques of coding statecharts directly in C and C++, and presents a small catalogue of
basic statechart-based design patterns. You will learn that statecharts are a powerful
way of design that you can use even without the assistance of sophisticated code-syn-
thesizing tools.
1

1

Chapter 1

Whirlwind Tour of

Quantum Programming

I have found out there ain’t no surer way to find out whether you like
people or hate them than to travel with them.
— Tom Sawyer Abroad [Mark Twain]

The triumph of the graphical user interface has been one of the most impressive
developments in software during the past three decades.1 Today the concept is so
familiar as to need no description. Although from the beginning, windows, icons,
menus, and pointing have been intuitive and easy to grasp for users, they remain a
challenge for programmers. The internal GUI architecture baffles many newcomers,
who often find it strange, backwards, mind-boggling, or weird. GUI programming is
different because unlike traditional data processing, it is entirely event-driven. Events

1. The concept of the windows, icons, menus, and pointing (WIMP) interface was first publicly displayed by Doug
Englebart and his team from the Stanford Research Institute at the Western Joint Computer Conference in 1968
[Englebart+ 68].
3

4 Chapter 1: Whirlwind Tour of Quantum Programming
can occur at any time in any order. The application always must be prepared to han-
dle them. GUI is an example of a complex reactive system.

You don’t need to look far to find other examples of reactive systems. In fact,
CPUs of all PCs, Macs, and other general-purpose computers consume only about 1
percent of the worldwide microprocessor production. The other 99 percent of micro-
processor chips sold every year end up in various embedded systems, which are pre-
dominantly reactive in nature. Yet, in spite of this ubiquity, the code found in most of
these systems is notoriously difficult to understand, fix, and maintain. Theoretical
foundations on how to construct such software have been around for more than a
decade; however, these ideas somehow could not make it into the mainstream.
Quantum Programming (QP) is an attempt to make the modern methods more
approachable for programmers. QP is a set of straightforward design patterns, idi-
oms, concrete implementations, and commonsense techniques that you can start
using immediately without investing in sophisticated tools.

1.1 The Ultimate Hook —

Anatomy of a GUI Application
The early GUI designers faced a formidable task. On the one hand, a GUI applica-
tion must be virtually infinitely customizable to allow anything from nonrectangular
windows to splash screens and dazzling screen savers. On the other hand, the system
ought to impose a consistent look and feel, and applications content with this stan-
dard behavior should be simple. How would you reconcile such conflicting require-
ments?

Today the problem seems easy — the trick is to use the “Ultimate Hook” [Petzold
96]. The idea is brilliantly simple. The GUI system (e.g., Windows) dispatches all
events first to the application (Windows calls a specific function inside the applica-
tion). If not handled by the application, the events flow back to the system. This
establishes a hierarchical order of event processing. The application, which is con-
ceptually at a lower level of hierarchy, has a chance to react to every event; thus, the
application can customize every aspect of its behavior. At the same time, all unhan-
dled events flow back to the higher level (i.e., to the system), where they are pro-
cessed according to the standard look and feel. This is an example of programming-
by-difference because the application programmer has to code only the differences
from standard system behavior.

Independently, David Harel applied the same idea to the finite state machine for-
malism [Harel 87]. Around 1983 he invented statecharts as a powerful way of speci-
fying complex reactive systems. The main innovation of statecharts over classical
finite state machines was the introduction of hierarchical states. To understand what
it means, consider the relation between the nested state (substate) and the surround-
ing state (superstate) depicted in Figure 1.1a. This statechart attempts to process any

The Ultimate Hook — Anatomy of a GUI Application 5
event, first, in the context of the substate. If the substate cannot handle it, the state-
chart automatically passes the event to the next higher level (i.e., to the superstate).
Of course, states can nest deeper than one level. The simple rule of processing events
applies then recursively to an arbitrary level of nesting.

Harel’s semantics of state hierarchy is at the heart of the Ultimate Hook design
underlying GUI systems; in other words, the statechart supports the Ultimate Hook
pattern directly. This becomes obvious when renaming the superstate to GUI_system
and the substate to GUI_application, as shown in Figure 1.1b. Now this is an
interesting result: The fundamental Ultimate Hook design pattern turns out to be a
very simple statechart! This powerful statechart is unusually simple because, at this
level of abstraction, it does not contain any state transitions.

Traditionally, the hierarchy of states introduced in statecharts has been justified as
follows.

As it turns out, highly complex behavior cannot be easily described by simple, “flat”
state-transition diagrams. The reason is rooted in the unmanageable multitude of

states, which may result in an unstructured and chaotic state-transition diagram —
[Harel+ 98].

Certainly, hierarchical diagrams are often simpler and better structured than tra-
ditional flat diagrams. However, this is not the fundamental reason for the signifi-
cance of state hierarchy, merely one of the side effects. State hierarchy is
fundamentally important even without the multitude of states and transitions, as
demonstrated clearly by the GUI example. The powerful statechart shown in Figure
1.1b contains only two states and not a single state transition; yet, it is powerful. The
only essential feature is state hierarchy, in its pure form.

Figure 1.1b is so unusually simple because it shows only the highest level of
abstraction. All nontrivial GUI applications have many modes of operation (states)
with typically complex rules of switching between these modes (state transitions),
regardless of whether you use a statechart, a classical flat state transition diagram,
brute force, or any other method. However, designs based on the statechart formal-
ism seem to be the most succinct, robust, and elegant, if for no other reason than
their direct support for programming-by-difference (Ultimate Hook pattern).

Figure 1.1 (a) Statechart notation for nesting states

(b) Statechart representing Ultimate Hook design pattern

superstate

substate

GUI_system

GUI_application

superstate

substate

(a) (b)
Ultimate Hook

pattern

6 Chapter 1: Whirlwind Tour of Quantum Programming
Although statecharts in some form or another have gained almost universal
acceptance as a superior formalism for specifying complex reactive systems, their
actual adoption into mainstream programming has been slow. In particular, GUI
designs traditionally have not used statecharts. You will not find them in standard
GUI architectures such as Microsoft Foundation Classes (MFC), Borland’s Object
Windows Library (OWL), or the more recent Java Abstract Window Toolkit (AWT).
You also will not find support for statecharts in rapid application development
(RAD) tools such as Microsoft Visual Basic or Borland Delphi. Among the many rea-
sons, the most important is that statecharts have been taught as a high-level, visual
language, mandating the use of sophisticated computer-aided software engineering
(CASE) tools, rather than as a type of design. This has created many misconceptions
in the industry and has resulted in a lack of practical advice on how to code state-
charts in mainstream programming languages such as C or C++.

1.2 A Better Way of Programming —

A Calculator That Works
Coding a statechart directly in C or C++ is not that hard. This section shows you
how. I decided to include this example early in the text so you could start experi-
menting with it as soon as possible. The example comes from the book Constructing
the User Interface with Statecharts by Ian Horrocks [Horrocks 99]. The author pre-
sents a desktop calculator application distributed with Microsoft Visual Basic. He
first identifies a number of problems with the original implementation and then pro-
poses an alternative statechart design. Here, I will pick up where he left off by actu-
ally implementing his statechart2 in C++ and integrating it with the Windows GUI
(Figure 1.2). Although this section concentrates on a C++ implementation, the
accompanying CD-ROM also contains the equivalent version in C.

1.2.1 Shortcomings of the Traditional Event–Action Paradigm

Before getting into the implementation; however, I’ll examine some problems that
Ian Horrocks found in the Visual Basic Calculator because they turn out to be
emblematic of inconsistencies in handling modal behavior. Most of the time, the

2. Actually, the statechart is modified slightly compared to the original Horrocks design.

A Better Way of Programming — A Calculator That Works 7
calculator correctly adds, subtracts, multiplies, and divides. However, in certain
cases, the application provides misleading results, freezes, or crashes altogether.

Exercise 1.1 After familiarizing yourself with the contents of the accompanying CD-
ROM (see Appendix C and the HTML browser on the disc) find the
Visual Basic Calculator example and launch it. Try the following
sequence of operations and watch the application crash: 1, /, –, =, 2, =.
Try the sequence 2, ×, CE, 2, =, and observe that Cancel Entry had no
effect, even though it appeared to cancel the ‘2’ entry from the display.
Try different ways of breaking the calculator or of producing misleading
results.

The Visual Basic Calculator often has problems dealing with negative numbers.
This is because the same button (–) is used to negate a number and to enter the sub-
traction operator. The correct interpretation of the ‘–’ event, therefore, depends on
the context, or mode, in which it occurs. Likewise, Cancel Entry (CE button) occa-
sionally works erroneously. Again, Cancel Entry makes sense only in a particular
context, namely, just after the user has entered a number or operator. As it turns out,
the calculator tries to handle it in other contexts as well. At this point, you probably
have noticed an emerging pattern. Just look for events that require different handling
depending on the context, and you can break the calculator in many more ways.

The faults just outlined are rooted in the standard bottom-up implementation of
this application. The context (state) of the computation is represented ambiguously
as a group of flags and variables, so it is difficult to tell precisely in which mode the
application is at any given time. There is no notion of any single mode of operation,
but rather tightly coupled and overlapping conditions of operation. For example, the
calculator uses DecimalFlag to indicate that a decimal point has been entered,

Figure 1.2 (a) Visual Basic Calculator GUI and (b) Quantum Calculator GUI

(a) (b)

8 Chapter 1: Whirlwind Tour of Quantum Programming
OpFlag to represent a pending operation, LastInput to indicate the type of the last
key press event, NumOps to denote the number of operands, and several more state
variables. With this representation, determining whether the ‘–’ key should be
treated as negation or subtraction requires the following conditional logic (in Visual
Basic).3

Such an approach is fertile ground for bugs for at least two reasons: examining
the current mode requires evaluating a complex expression, and switching between
different modes requires modifying many variables, which can easily lead to incon-
sistencies. Expressions like these, scattered throughout the code, are not only unnec-
essarily complex but expensive to evaluate at run time. They are also notoriously
difficult to get right, even by experienced programmers, as the bugs still lurking in
the Visual Basic Calculator attest.

1.2.2 Calculator Statechart

The good news is that there is a better way of approaching reactive systems. State-
charts, like the one depicted in Figure 1.3, eliminate the aforementioned problems by
design. Arriving at this statechart was definitely not trivial, and you shouldn’t worry
if you don’t fully understand it at the first reading (I wouldn’t either). At this point,
my goal is just to introduce you to the statechart approach and convince you that it
isn’t particularly hard to code in C or C++.4 I want to walk you quickly through the
main points without slowing you down with full-blown detail. I promise to return to

Select Case NumOps
 Case 0
 If Operator(Index).Caption = "-" And LastInput <> "NEG" Then
 ReadOut = "-" & ReadOut
 LastInput = "NEG"
 End If
 Case 1
 Op1 = ReadOut
 If Operator(Index).Caption = "-" And LastInput <> "NUMS" And
 OpFlag <> "=" Then
 ReadOut = "-"
 LastInput = "NEG"
 End If

. . .

3. The complete Visual Basic source code for the calculator application is available on the accompanying CD-
ROM.

4. Here, I discuss a C++ implementation. However, the implementation in plain C is available on the accompany-
ing CD-ROM.

A Better Way of Programming — A Calculator That Works 9
this statechart on more than one occasion in the following chapters, for a closer
study of statechart design, and to discuss concrete implementation techniques later.

The calculator statechart from Figure 1.3 contains 15 states5 (the topmost Win-
dows system state is not included) and handles 11 distinct events: IDC_0, IDC_1_9,

5. At first, you might be disappointed that the statechart for such a simple calculator is so complicated. After ana-
lyzing the problem, I feel that the diagram in Figure 1.3 represents the complexity of the problem just about
right. Section 2.3.1 in Chapter 2 explains in more detail the reasons for complexity in this case.

Figure 1.3 Calculator statechart; the standard IDC_ Windows event prefixes are

omitted for clarity

entry/

calc

ready
entry/

negated1

entry/

result
OPER[keyId ==
 PLUS]/

begin

operand1

opEntered

zero1
0/
1_9/

int1
0/
1_9/

frac1

1_9 POINT

POINT

POINT POINT1_9 1_900

entry/

negated2

operand2

zero2

0/
1_9/

int2

0/
1_9/

frac2

1_9 POINT

POINT

0 1_9 POINT 0 1_9 POINT

OPER[keyId==MINUS]

CE

CE

EQUALS

OPER

C

OPER

OPER[keyId==MINUS]

OPER

IDCANCEL

CE

CE

10 Chapter 1: Whirlwind Tour of Quantum Programming
IDC_POINT, IDC_C, IDC_CE, IDC_PLUS, IDC_MINUS, IDC_MULT, IDC_DIVIDE,
IDC_EQUALS, and IDCANCEL.

Exercise 1.2 Find and launch the Quantum Calculator application (try both the C++
and C implementations). Try to understand the behavior of the applica-
tion by comparing it with the statechart from Figure 1.3 (you might find
the current state display handy). Try to break it or produce misleading
results. Test the Quantum Calculator to see how it handles the ‘–’ and ‘+’
unary operators.

This state machine takes advantage of hierarchy in several places. For example,
Cancel (the ‘C’ button) is handled explicitly only in the highest level state, calc
(look for the arrow labeled “C” at the top of Figure 1.3). This event triggers a self-
transition in the calc state. You can understand how the statechart handles the Can-
cel event based solely on the Ultimate Hook semantics of state nesting introduced
earlier. Assume, for example, that when the user clicks the ‘C’ button, the active state
is opEntered. This state doesn’t “know” how to handle the Cancel event, so it auto-
matically passes this event for processing to the next higher level state, that is, to
calc. The calc state knows how to handle the Cancel event by executing the afore-
mentioned self-transition. This causes exit from calc followed by entry, first to
calc, then ready, and finally begin, by the recursive execution of initial transitions.
At this point, the calculator ends processing of the Cancel event and waits for the
next event.

To restate: The statechart started in opEntered and ended in begin. Actually, the
statechart could have been in any of the other 11 substates of calc (refer to Exercise
1.3) and would still end up in begin. The classical flat state machine would require
specifying each of the 11 transitions explicitly. The statechart allows reusing one
transition 11 times. The gain is not only the drastic reduction in the sheer number of
transitions but also a more accurate representation of the problem at hand. There is
only one Cancel transition in the calculator problem. A natural language specifica-
tion might read as follows: Whatever state the calculator is in at the time the user
clicks the ‘C’ button, the calculator should clear its display and other internal regis-
ters and become ready for another computation. The statechart represents this speci-
fication faithfully, whereas the classical flat state machine would add repetitions and
artificial complexity.

Exercise 1.3 Not all 15 substates of calc can be active. For example states ready,
operand1, and operand2 can never become active. Explain why.

A Better Way of Programming — A Calculator That Works 11
The following implementation of the calculator statechart is straightforward
because all the state machine functionality is inherited from the QHsm (quantum hier-
archical state machine) class. Listing 1.1 shows the C++ declaration of the calculator
statechart.

Listing 1.1 Declaration of the calculator statechart; the unusual indentation of

state handler methods (lines 14–29) indicates state nesting

 1 #include <windows.h>
 2 #include "qf_win32.h" // include the Quantum Framework (QF)
 3
 4 struct CalcEvt : public QEvent {
 5 int keyId; // ID of the key depressed
 6 };
 7
 8 class Calc : public QHsm { // calculator Hierarchical State Machine
 9 public:
 10 Calc() : QHsm((QPseudoState)initial) {}
 11 static Calc *instance(); // Singleton accessor method
 12 private:
 13 void initial(QEvent const *e); // initial pseudostate-handler
 14 QSTATE calc(QEvent const *e); // state-handler
 15 QSTATE ready(QEvent const *e); // state-handler
 16 QSTATE result(QEvent const *e); // state-handler
 17 QSTATE begin(QEvent const *e); // state-handler
 18 QSTATE negated1(QEvent const *e); // state-handler
 19 QSTATE operand1(QEvent const *e); // state-handler
 20 QSTATE zero1(QEvent const *e); // state-handler
 21 QSTATE int1(QEvent const *e); // state-handler
 22 QSTATE frac1(QEvent const *e); // state-handler
 23 QSTATE opEntered(QEvent const *e); // state-handler
 24 QSTATE negated2(QEvent const *e); // state-handler
 25 QSTATE operand2(QEvent const *e); // state-handler
 26 QSTATE zero2(QEvent const *e); // state-handler
 27 QSTATE int2(QEvent const *e); // state-handler
 28 QSTATE frac2(QEvent const *e); // state-handler
 29 QSTATE final(QEvent const *e); // state-handler
 30 private: // action methods...
 31 void clear();
 32 void insert(int keyId);
 33 void negate();
 34 void eval();
 35 void dispState(char const *s);
 36 private: // data attributes
 37 HWND myHwnd;
 38 char myDisplay[40];

12 Chapter 1: Whirlwind Tour of Quantum Programming
Events dispatched to the calculator are represented as instances of the CalcEvt
class (Listing 1.1, lines 4–6). This class derives from QEvent and adds the keyId
event parameter, which represents the ID of the key entered. As mentioned before,
the calculator hierarchical state machine Calc declared in lines 8 through 46 derives
from QHsm. The Calc class contains several attributes that keep track of the compu-
tation (the attributes constitute the memory of the state machine). Please note, how-
ever, that the attributes are not used to determine the state of the application. Rather,
the QHsm superclass keeps track of the active state, which is crisply defined at all
times. In fact, the calculator GUI displays it for you, so that you can easily correlate
calculator behavior with the underlying statechart from Figure 1.3. You also can rec-
ognize all states declared as state handler methods in lines 14 through 29. The
unusual use of indentation indicates state nesting.

1.2.3 Integration with Windows

For simplicity, this example uses the raw Win32 API rather than a higher level wrap-
per like MFC. The calculator GUI is a dialog box, so it declares friendship with the
corresponding Windows dialog procedure (Listing 1.1, lines 44–45). Because Win-
dows is an event-driven (reactive) system, it already provides a complete environ-
ment within which a state machine can execute and needs only minor customizations
for this particular application. The main Windows procedure, WinMain(), performs
only basic initializations and then invokes the dialog procedure.

The dialog procedure (Listing 1.2) starts the state machine (by invoking the
init() method in response to the WM_INIT_DIALOG Windows message), translates
the Windows events to calculator events, and dispatches the events for processing
(by invoking the dispatch() method) in response to the WM_COMMAND Windows
message.

 39 char *myIns;
 40 double myOperand1;
 41 double myOperand2;
 42 int myOperator;
 43 BOOL isHandled;
 44 friend BOOL CALLBACK calcDlg(HWND hwnd, UINT iEvt,
 45 WPARAM wParam, LPARAM lParam);
 46 };

int WINAPI WinMain(HINSTANCE hInst, HINSTANCE hPrevInst,
 PSTR cmdLine, int iCmdShow)
{
 InitCommonControls(); // load common controls library
 locHinst = hInst; // store instance handle
 DialogBox(hInst, MAKEINTRESOURCE(IDD_DIALOG), NULL, calcDlg);
 return 0; // exit application when the dialog returns
}

A Better Way of Programming — A Calculator That Works 13
Listing 1.2 Initializing and dispatching events to the Quantum Calculator

statechart from a dialog procedure

static HINSTANCE locHinst; // this instance
static HWND locHwnd; // window handle

BOOL CALLBACK calcDlg(HWND hwnd, UINT iMsg,
 WPARAM wParam, LPARAM lParam)
{
 CalcEvt e;
 switch (iMsg) {
 case WM_INITDIALOG:
 Calc::instance()->myHwnd = locHwnd = hwnd;
 SendMessage(hwnd, WM_SETICON, (WPARAM)TRUE,
 (LPARAM)LoadIcon(locHinst, MAKEINTRESOURCE(IDI_QP)));
 Calc::instance()->init(); // take the initial transition
 return TRUE;
 case WM_COMMAND:
 switch (e.keyId = LOWORD(wParam)) {
 case IDCANCEL:
 e.sig = TERMINATE;
 break;
 case IDC_1:
 case IDC_2:
 case IDC_3:
 case IDC_4:
 case IDC_5:
 case IDC_6:
 case IDC_7:
 case IDC_8:
 case IDC_9:
 e.sig = IDC_1_9;
 break;
 case IDC_PLUS:
 case IDC_MINUS:
 case IDC_MULT:
 case IDC_DIVIDE:
 e.sig = IDC_OPER;
 break;
 default:
 e.sig = e.keyId;
 break;
 }
 Calc::instance()->isHandled = TRUE;
 Calc::instance()->dispatch(&e); // take one RTC step
 return Calc::instance()->isHandled;
 }
 return FALSE;
}

14 Chapter 1: Whirlwind Tour of Quantum Programming
1.2.4 State Handler Methods

State handler methods perform the actual work of the application. As members of
the Calc class, state handlers have direct access to all the attributes. A state handler
takes a pointer to an immutable event instance (QEvent const *) and returns either
0, if it handled the event, or the superstate (more precisely, the pointer to the super-
state handler method), if not.

Listing 1.3 contains handlers for states calc, ready, and begin (you can refer to
the accompanying CD-ROM [Appendix C] for the code of the other state handlers).
The structure of all state handlers is similar: They all start with an identical switch
statement (with an event signal e->sig used as the discriminator) and all end in the
same way by returning the superstate (i.e., a pointer to superstate handler method).
For example, state begin returns ready, ready returns calc, and calc returns top
(the ultimate superstate that contains the entire state machine). The body of the
switch statement contains all signals that the corresponding state handles, coded
as separate case statements. For example, the begin state handles signals
Q_ENTRY_SIG and IDC_OPER (Listing 1.3 lines 41–50). Most case statements end
with return 0 to indicate that the state handler processed this event. State transi-
tions are coded using the Q_TRAN() (quantum transition) macro. For example,
event IDC_OPER in state ready triggers a transition to state opEntered, so you code
it as (line 33) Q_TRAN(&Calc::opEntered).

Listing 1.3 State handlers for calc, ready, and begin states. Boldface indicates

housekeeping code (see the last paragraph of this section)

 1 QSTATE Calc::calc(QEvent const *e) {
 2 switch (e->sig) {
 3 case Q_ENTRY_SIG: dispState("calc"); return 0;
 4 case Q_INIT_SIG: clear(); Q_INIT(&Calc::ready); return 0;
 5 case IDC_C: clear(); Q_TRAN(&Calc::calc); return 0;
 6 case TERMINATE: Q_TRAN(&Calc::final); return 0;
 7 }
 8 if (e->sig >= Q_USER_SIG) {
 9 isHandled = FALSE;
 10 }
 11 return (QSTATE)&Calc::top;
 12 }
 13
 14 QSTATE Calc::ready(QEvent const *e) {
 15 switch (e->sig) {
 16 case Q_ENTRY_SIG: dispState("ready"); return 0;
 17 case Q_INIT_SIG: Q_INIT(&Calc::begin); return 0;
 18 case IDC_0: clear(); Q_TRAN(&Calc::zero1); return 0;
 19 case IDC_1_9:
 20 clear();

A Better Way of Programming — A Calculator That Works 15
As you can see, the housekeeping code6 (i.e., state machine declaration and state
handler skeletons, indicated in boldface in Listing 1.3) you need to write to translate
a statechart to C++ is almost trivial. In fact, it is not more complicated than the code
you need to write to translate a Unified Modeling Language (UML) class diagram to
C++ (i.e., class declaration and method skeletons). You probably don’t even think
that you translate a class diagram to C++; you simply code an object-oriented system
directly in C++. This is so because C++ provides the right (object-oriented) level of
abstraction. The practical techniques for implementing statecharts raise the level of

 21 insert(((CalcEvt *)e)->keyId);
 22 Q_TRAN(&Calc::int1);
 23 return 0;
 24 case IDC_POINT:
 25 clear();
 26 insert(IDC_0);
 27 insert(((CalcEvt *)e)->keyId);
 28 Q_TRAN(&Calc::frac1);
 29 return 0;
 30 case IDC_OPER:
 31 sscanf(myDisplay, "%lf", &myOperand1);
 32 myOperator = ((CalcEvt *)e)->keyId;
 33 Q_TRAN(&Calc::opEntered);
 34 return 0;
 35 }
 36 return (QSTATE)&Calc::calc;
 37 }
 38
 39 QSTATE Calc::begin(QEvent const *e) {
 40 switch (e->sig) {
 41 case Q_ENTRY_SIG: dispState("begin"); return 0;
 42 case IDC_OPER:
 43 if (((CalcEvt *)e)->keyId == IDC_MINUS) {
 44 Q_TRAN(&Calc::negated1);
 45 return 0; // event handled
 46 }
 47 else if (((CalcEvt *)e)->keyId == IDC_PLUS) { // unary "+"
 48 return 0; // event handled
 49 }
 50 break; // event unhandled!
 51 }
 52 return (QSTATE) &Calc::ready;
 53 }

6. Douglass [Douglass 99] uses the term “housekeeping code” to denote sections of code that are used repetitively
to represent common constructs such as states, transitions, events, and so on. Some CASE tools can automati-
cally generate such representational invariants from statechart diagrams.

16 Chapter 1: Whirlwind Tour of Quantum Programming
abstraction further (to the “quantum” level) and, in the same sense, enable direct
modeling of reactive systems in C++.

1.3 Object-Oriented Analogy
I hope you experienced déjà vu when you read about programming-by-difference
and reuse of behavior in the context of statecharts. Haven’t you encountered similar
concepts before? Doesn’t a state hierarchy resemble an object-oriented taxonomy of
classes? As this section explains, hierarchical states don’t simply resemble classes of
objects in object-oriented programming (OOP); the analogy is deep and fundamen-
tal. Such a close analogy has many practical implications.

1.3.1 State Hierarchy and Class Taxonomy

One of the cornerstones of OOP is the concept of class inheritance, which allows you
to define new classes of objects in terms of existing classes, and consequently enables
you to construct hierarchically layered taxonomies of classes. A hierarchy of states
introduces another type of inheritance, which is equally fundamental. I will call it
behavioral inheritance [Samek+ 00].

To understand how state hierarchy leads to inheritance and how it works, con-
sider again the statechart depicted in Figure 1.1a. This time, however, suppose that
the substate is completely empty, with no internal structure (no transitions and no
reactions). If such a state becomes active, it will automatically forward all events to
the superstate. Therefore, the behavior of such a substate will be externally indistin-
guishable from the superstate — the empty substate inherits the exact behavior from
its superstate. This is analogous to an empty subclass, which does not declare any
methods or attributes. An instance of such a subclass is, in every respect, equivalent
to an instance of its superclass. The child class is indistinguishable from the parent
class because everything is inherited exactly.

Although checking the corner case of exact inheritance is instructive, inspecting
ways in which nested states can differ from their ancestors is more interesting. As
class inheritance allows subclasses to “adapt” to new environments, behavioral
inheritance allows substates to “mutate” by adding new behavior or by overriding
existing behavior. Nested states can add new behavior by adding new state transi-
tions or reactions for events that are not recognized by surrounding states. This cor-
responds to adding new methods to a subclass. Alternatively, a substate may also
process the same events as the surrounding states but will do it in a different way.
Thus, the substate can override the inherited behavior, which corresponds to a sub-
class overriding a method defined by its parents, which leads to polymorphism.

In a typical class taxonomy, classes lower in the hierarchy are more specialized
than their ancestors; conversely, classes higher in the hierarchy are generalizations of

Object-Oriented Analogy 17
their descendants. The same holds true in state hierarchies. For example, consider a
hypothetical “failed” state that turns on an alarm bell upon entry (as part of its entry
action) and turns it off upon exit (as part of its exit action). If this state has a sub-
state, say “unsafe,” and this substate becomes active, the alarm bell will ring because
being in the unsafe state also means being in the failed state. If the system is in the
unsafe state, it also is in the failed state and, recursively, is in every ancestor state of
failed. The is in (is-in-a-state) generalization of states corresponds to the is a (is-a-
kind-of) generalization of classes.

1.3.2 Entering/Exiting States and Instantiating/Finalizing

Classes

In the previous example, the entry action executed automatically upon entry to a
state (turning on the alarm bell), and the exit action (turning off the alarm bell) exe-
cuted automatically upon exit from the state. These actions are analogous to class
constructors and destructors. Instantiation of a class is very much like entering a
state. Conversely, class finalization is like exiting a state. In both cases, special
actions are invoked in a predetermined order: Constructors are invoked starting
from the most remote ancestor class (destructors are invoked in reverse order). Entry
actions are invoked starting from the topmost superstate (exit actions are invoked in
reverse order).

1.3.3 Programming-by-Difference

Class inheritance is commonly used for programming-by-difference. This program-
ming style is the essence of reuse: A subclass needs to define only the differences from
its superclass and otherwise can reuse (share) implementation defined in the super-
class.

Behavioral inheritance is identical in this respect. A substate needs to define only
the differences from its superstate and can otherwise reuse the behavior defined in
the superstate. In other words, supporting programming-by-difference behavioral
inheritance enables reuse of behavior.

1.3.4 Behavioral Inheritance as a Fundamental Meta-Pattern

OOP can be viewed as a consistent use of three fundamental concepts — abstraction,
inheritance, and polymorphism — that are actually meta-patterns because they pro-
vide the underpinnings for all other object-oriented (OO) design patterns [Gamma+
95]. QP introduces and implements another, equally fundamental, meta-pattern:
behavioral inheritance. The meta-pattern is truly enabling because it raises the level
of abstraction to allow direct modeling of complex state behavior in C or C++ in the
same way that fundamental OO meta-patterns (natively supported in OO languages)
enable direct OO modeling in C++, Smalltalk, or Java.

18 Chapter 1: Whirlwind Tour of Quantum Programming
As you will see in Chapter 4, the implementation of the behavioral inheritance
meta-pattern often uses the object analogy and borrows many solutions from the
C++ object model implementation. Again, this is a direct application of the OO anal-
ogy.

1.3.5 State Patterns

As Gamma and colleagues [Gamma+ 95] write: “One thing expert designers know
not to do is solve every problem from the first principles.” The maturity of object
technology shows through the emergence of OO design patterns that capture, name,
and catalog proven OO designs. In analogy, state patterns, which are concerned with
useful ways of structuring states rather than objects, have begun to appear [Douglass
99], reflecting the increasing maturity of statechart technology.

By providing a concrete implementation for the behavioral inheritance meta-pat-
tern, QP enables a much more precise description of state patterns than the tradi-
tional graphical statechart notation alone, in the form of concrete, executable code.
In this respect, QP acts much like an OO programming language, which also cap-
tures OO patterns in the form of concrete executable code. In both cases, bubbles
and arrows of graphical representation, although very helpful, are not sufficient to
capture all the details necessary to understand and successfully apply a pattern. Ber-
trand Meyer summarized elloquently the shortcomings of graphical-only descrip-
tions when he said [Meyer 97a]:

the good thing about bubbles and arrows, as opposed to programs, is that they never
crash.

State patterns in QP revolve predominantly around the central concept of behav-
ioral inheritance, rather than the orthogonal component. Therefore, they represent
alternatives to the solutions presented elsewhere (e.g., Douglass [Douglass 99]).
Chapter 5 presents a minicatalog of quantum state patterns.

1.3.6 Refactoring State Models

Another aspect in which state models and OO models are similar is their evolution
during the software life cycle. Both state hierarchies and class hierarchies undergo
similar development phases, and both, at some point of their life cycle, need restruc-
turing to continue to evolve.

The main objective of software restructuring, or refactoring (see e.g., [Opdyke
92], [Fowler+ 99]), is not to change how the software behaves — indeed, the changes
should be transparent to black-box testing. The goal of refactoring is rather to
actively counteract the natural increase in the degree of chaos (architectural decay)

Quantum Analogy 19
that gradually renders any software system prohibitively expensive to maintain and
modify.

Because of the similarities between behavioral inheritance and class inheritance,
the same general refactorings are applicable both to OO systems and to statecharts.

• Refactoring to generalize — creating a common superclass–creating a com-
mon superstate

• Refactoring to specialize — deriving subclasses from a common base–nest-
ing substates in a common superstate

In addition, like OO design patterns, state patterns capture many structures that
result from refactoring state models. Using these patterns early in the life of a state-
chart design can prevent later refactorings. Alternatively, when restructuring becomes
inevitable, state patterns can provide convenient targets for your refactorings.

1.3.7 Beyond Object-Oriented Programming

Recent years have seen several attempts to extend and augment traditional OOP.
Trends that have gained particular attention are components, patterns, and frame-
works. Software components are capable of encapsulating complete business func-
tions and therefore are usually at a higher level of granularity than objects. OO
design patterns try to capture and reuse proven patterns of collaboration among
whole groups of objects. At a higher level still are frameworks, which are entire,
albeit incomplete, applications. The common themes of all these developments are
ways of combining many fine-granularity objects into systems. All these trends are
examples of programming-in-the-large.

QP, based on behavioral inheritance, takes the opposite route. The traditional OO
method stops short at the boundary of a class, leaving the internal implementation of
individual class methods to mostly procedural techniques. Behavioral inheritance
and the OO analogy allow many OO methods to be extended and applied inside
classes.

1.4 Quantum Analogy
To help you understand how Quantum Programming fits with other trends, it is
helpful to compare software developments to modern physics. Traditionally, OOP
would correspond to classical mechanics: beautifully able to describe everyday expe-
rience but unable to accurately describe either very large or very small scale phenom-
ena. Components, patterns, and frameworks try to expand the macroscale frontier.
You could compare them to thermodynamics or general relativity pertinent to large-
scale, complex objects like galaxies or black holes. In this picture, QP would corre-
spond to quantum mechanics, because it expands the microscale frontier.

20 Chapter 1: Whirlwind Tour of Quantum Programming
As described by the laws of quantum theory, microscopic objects have the follow-
ing two most characteristic properties.

• Quantum objects spend their lives in strictly defined quantum states and
can change their state only by means of uninterruptible transitions known
as quantum leaps. Because of various symmetries, the quantum states are
naturally hierarchical (degenerate in quantum terminology).

• Quantum systems cannot interact with one another directly; rather, every
interaction proceeds via an intermediate artifact (intermediate boson). The
various intermediate bosons are mediators of fundamental forces (e.g., pho-
tons mediate the electromagnetic force, gluons the strong force, and bosons
W± and Zo the weak forces).

QP follows the quantum model quite faithfully. Part I of this book corresponds to
the first characteristics of quantum systems — their discrete, statelike behavior. Part
II, on the other hand, covers the second aspect of the quantum analogy — the inter-
actions. The fundamental units of decomposition in QP are concurrently active hier-
archical state machines (active objects). These software machines can interact with
one another only by asynchronous exchange of various event instances.

1.5 Summary
This chapter provided a quick tour of Quantum Programming. QP is concerned with
reactive systems, which are systems that continuously interact with their environment
by means of exchanging events. Over the years, several techniques have evolved that
can be used to design and implement such systems. One of the most powerful ideas
has proved to be the concept of hierarchical event processing, which GUI program-
mers know as the Ultimate Hook pattern. Almost two decades ago, David Harel gen-
eralized this concept and combined it with finite state machines to create the
formalism known as statecharts. Although statecharts have gained almost universal
acceptance in software methodologies and modeling languages, like UML, their
adoption into everyday programming has been slow. The main reason is the wide-
spread misunderstanding that statecharts are only usable when supported by sophisti-
cated CASE tools. The result is a lack of practical advice on how to efficiently hand-
code statecharts in mainstream programming languages such as C or C++. However,
as you saw in the Quantum Calculator example, you can easily implement the funda-
mental concepts of statecharts directly in C++ by applying the behavioral inheritance
meta-pattern. This pattern is central to QP, just as abstraction, inheritance, and poly-
morphism are patterns central to OOP.

The analogy between QP and OOP goes deeper. They are both unified around the
concept of inheritance. Just as class inheritance is a cornerstone of OOP, behavioral

Summary 21
inheritance is a cornerstone of QP. This analogy allows almost direct application of
many OO techniques to state models, such as programming-by-difference, the con-
struction of proper state taxonomies, the application of similar refactorings, or the
use of exit and entry actions. In addition, the implementation of the behavioral
inheritance meta-pattern shares many commonalities with the internal implementa-
tion of the C++ object model, which you can view as a native realization of the three
fundamental OO design patterns: abstraction, inheritance, and polymorphism.

QP, like OOP, introduces its own (quantum) state patterns. These patterns are
concerned with useful ways of structuring statecharts to solve recurring problems.
QP, like an OO programming language, allows more precise descriptions of the pat-
terns than can be achieved with graphical-only representation.

QP goes beyond traditional OOP by modeling the internal structure of reactive
classes. The governing laws in this microcosm turn out to be similar to those of
quantum physics, where objects spend their lives in discrete states, make uninterrupt-
ible state transitions (quantum leaps), and interact only by exchanging event
instances (intermediate virtual bosons).

22 Chapter 1: Whirlwind Tour of Quantum Programming

2

Chapter 2

A Crash Course in

Statecharts

Nothing is particularly hard if you divide it into small jobs.
— Henry Ford

If you look through enough real-life code in use across the industry, you probably
agree that the code pertaining to the reactive parts of various systems is riddled with
a disproportionate number of convoluted conditional execution branches (deeply
nested if–else or switch–case statements in C/C++). This highly conditional code
(recall the Visual Basic Calculator from Chapter 1) is a testament to the basic charac-
teristics of reactive systems, which respond to an input based on not only the nature
of the input but the history of the system (i.e., on past inputs in which the system was
involved).

If you could eliminate even a fraction of these conditional branches, the code
would be much easier to understand and test, and the sheer number of convoluted
execution paths through the code would drop radically, perhaps by orders of magni-
tude. Techniques based on state machines are capable of achieving exactly this — a
dramatic reduction of the different paths through the code and simplification of the
conditions tested at each branching point.
23

24 Chapter 2: A Crash Course in Statecharts
The state machines described in the UML specification represent the current state
of the art in the long evolution of these techniques. UML state machines, known also
as UML statecharts [OMG 01], are object-based variants of Harel statecharts [Harel
87] and incorporate several concepts defined in ROOMcharts, a variant of the state-
chart defined in the real-time object-oriented modeling (ROOM) language [Selic+
94].

This chapter briefly introduces UML statecharts with a fresh, unorthodox per-
spective on the role of state machines and state modeling. My intention is not to give
a complete discussion of UML statecharts, which the official OMG specification
[OMG 01]1 covers formally and comprehensively. Rather, my goal in this chapter is
to lay a foundation quickly by establishing basic terminology, introducing basic
notation,2 and clarifying semantics. This chapter is restricted to only a subset of
those statechart features that are arguably most fundamental. The emphasis is on
essence rather than formality.

2.1 The Essence of Finite State Machines
A system exhibits state behavior when it operates differently during different periods
and when its behavior can be partitioned into finite, nonoverlapping chunks called
states.

Not all systems or their components reveal state behavior; certain system compo-
nents exhibit only simple behavior. For example, basic mathematical functions, such
as sin(x), return the same result for a given input x regardless of the history of previ-
ous inputs {xi}. Conversely, a continuous behavior depends on the history of inputs
but cannot reasonably be divided into a finite number of states. System components
in this category include, for example, digital filters [Douglass 99].

A common, straightforward way of modeling state behavior is through a finite
state machine (FSM). FSMs are an efficient way to specify constraints of the overall
behavior of a system. Being in a state means that the system responds only to a sub-
set of all allowed inputs, produces only a subset of possible responses, and changes
state directly to only a subset of all possible states.

2.1.1 States

A state is a situation or condition in the life of a system during which some (usually
implicit) invariant holds, the system performs some activity, or the system waits for
some external event [OMG 01].

A state captures the relevant aspects of the system’s history very efficiently. For
example, when you strike a key on a keyboard, the character code generated will be
either an uppercase or a lowercase character, depending on whether the Caps Lock is

1. The official UML specification [OMG 01] is included in PDF on the accompanying CD-ROM.
2. Appendix B contains a comprehensive summary of the notation.

The Essence of Finite State Machines 25
active. Therefore, the keyboard is in the capsLocked state, or the default state
(most keyboards have an LED that indicates when the keyboard is in the
capsLocked state). The behavior of a keyboard depends only on certain aspects of
its history, namely whether Caps Lock has been activated, but not, for example, on
how many and which specific characters have been typed previously. A state can
abstract away all possible (but irrelevant) event sequences and capture only the rele-
vant ones.

2.1.2 Extended States

One possible interpretation of state for software systems is that each state represents
one distinct set of valid values of the whole program memory. Even for simple pro-
grams with only a few elementary variables, this interpretation leads to an astronom-
ical number of states. For example, a single 32-bit integer could contribute to 232

(4,294,967,296) different states. Clearly, this interpretation is not practical, so pro-
gram variables are commonly dissociated from states. Rather, the complete condition
of the system (called the extended state) is the combination of a qualitative aspect —
the state — and the quantitative aspects — the extended state variables. In this inter-
pretation, a change of variable does not always imply a change of the qualitative
aspects of the system behavior and therefore does not lead to a change of state
[Selic+ 94].

State machines supplemented with memory are called extended state machines.
Extended state machines can apply the underlying formalism to much more complex
problems than is practical with the basic (memoryless) state machines. For instance,
suppose the behavior of the keyboard depends on the number of characters typed on
it so far and that after, say, 100,000 keystrokes, the keyboard breaks down and
enters a broken state. To model this behavior in a state machine without memory,
you would need to introduce 100,000 states (e.g., pressing a key in state
stroke54312 would lead to state stroke54313, and so on), which is clearly an
impractical proposition. Alternatively, you could construct an extended state
machine with a 32-bit counter. The counter would be incremented by every key-
stroke without changing state. When the counter reached the critical value of
100,000 keystrokes, the state machine would enter the broken state.

This wider range of applicability of extended state machines comes with a price,
however, because of the blurry distinction between the qualitative aspects (state) and
the quantitative aspects (extended state variables). For example, if the keyboard was
to enter the broken state after just three keystrokes (rather poor mileage), then add-
ing three states (e.g., stroke1, stroke2, and stroke3) might be more advantageous
than introducing a keystroke counter, which has to be properly initialized and then
incremented and checked by every keystroke event. What is the “right” way to
model this particular behavior: the basic state machine with the three states or the
extended state machine with the keystroke counter? The answer to this question is

26 Chapter 2: A Crash Course in Statecharts
not always straightforward and presents a difficult design decision that will have
profound effects on software performance and complexity.

2.1.3 Guards

Extended state machines often react to stimuli based not only on the qualitative state
but also on the value of the extended state variables associated with that state. For
instance in the keyboard example, when the keystroke counter exceeds a certain
value, the state machine alters its behavior by changing state. In fact, the logical con-
dition (comparing the counter with the threshold) is tested by every keystroke, but
the change of state occurs only when the condition evaluates to TRUE.

This example illustrates the general mechanism by which extended state variables
influence behavior. Boolean expressions, called guard conditions (or simply guards),
are evaluated dynamically based on the value of extended state variables.3 Guard
conditions affect the behavior of a state machine by enabling or disabling certain
operations (e.g., change of state).

The need for guards is the immediate consequence of adding memory (extended
state variables) to the state machine formalism. Used sparingly, guards and extended
state variables form an incredibly powerful mechanism that can immensely simplify
designs. Used too liberally, however, guards can easily defeat the purpose of using
state machines in the first place.

If you recall from the first paragraph of this chapter, the primary reason to use
state machines is to reduce the number of conditional branches in the code and to
reduce the complexity of the tests performed at each branch. The use of guards goes
exactly against these goals by reintroducing testing of (extended state) variables and
branching based on these tests. In the extreme case, guards effectively take over han-
dling of all the relevant conditions in the system, which puts you back to square one.
Indeed, abuse of guards is the primary mechanism of architectural decay in designs
based on state machines.

2.1.4 Events

In the most general terms, an event is an occurrence in time and space that has signif-
icance to the system. Strictly speaking, in the UML specification, the term “event”
refers to the type of occurrence rather than to any concrete instance of that occur-
rence [OMG 01]. For example, Keystroke is an event for the keyboard, but each
press of a key is not an event but a concrete instance of the Keystroke event. Another
event of interest for the keyboard might be Power-on, but turning the power on
tomorrow at 10:05:36 will be just an instance of the Power-on event.

3. Guard conditions also can contain event parameters (see the discussion of events and event parameters in the
next section).

The Essence of Finite State Machines 27

Usually, in the day-to-day battle, it seems very tempting (especially to programmers
new to state machine formalism) to add yet another extended state variable and yet
another test (guard) rather than to factor out the related behavior into a new quali-
tative aspect of the system — the state. Therefore, perhaps the most important
requirement for a practical state machine implementation is the ease of adding (or
removing) states. The likelihood of architectural decay is directly proportional to the
overhead (actual or perceived) involved in adding or removing states.
An event can have associated parameters, allowing the event instance to convey
not only the occurrence of some interesting incident but also quantitative informa-
tion regarding that occurrence. For example, the Keystroke event generated by press-
ing a key on a computer keyboard has associated parameters that convey the
character scan code, as well as the status of the Shift, Ctrl, and Alt keys.

An event instance outlives the instantaneous occurrence that generated it and
might convey this occurrence to one or more state machines. Once generated, the
event instance goes through a processing life cycle that can consist of up to three
stages. First, the event instance is received when it is accepted and awaiting process-
ing (e.g., it is placed on the event queue). Later, the event instance is dispatched to the
state machine, at which point it becomes the current event. Finally, it is consumed
when the state machine finishes processing the event instance. A consumed event
instance is no longer available for processing.

2.1.5 Actions and Transitions

When an event instance is dispatched, the state machine responds by performing
actions, such as changing a variable, performing I/O, invoking a function, generating
another event instance, or changing to another state. Any parameter values associ-
ated with the current event are available to all actions directly caused by that event.

Switching from one state to another is called state transition, and the event that
causes it is called the triggering event, or simply trigger. In the keyboard example, if
the keyboard is in the default state when the Caps Lock key is pressed, the key-
board will enter the capsLocked state. However, if the keyboard is already in the
capsLocked state, pressing Caps Lock will cause a different transition — from the
capsLocked to the default state. In both cases, pressing Caps Lock is the triggering
event.

In extended state machines, a transition can have a guard, which means that the
transition can “fire” only if the guard evaluates to TRUE. A state can have many tran-
sitions in response to the same trigger, as long as they have nonoverlapping guards;
however, this situation could create problems in the sequence of evaluation of the
guards when the common trigger occurs. The UML specification intentionally does

28 Chapter 2: A Crash Course in Statecharts
not stipulate any particular order; rather, it puts the burden on the designer to devise
guards in such a way that the order of their evaluation does not matter. Practically,
this means that guard expressions should have no side effects, at least none that
would influence evaluation of other guards having the same trigger.

2.1.6 Mealy and Moore Automata

Classical FSMs have two interpretations: Mealy and Moore automata. The Mealy
automaton associates actions with state transitions. Because actions necessarily take
a finite amount of time, a Mealy automaton causes conceptual difficulty, because
while a system is executing actions, it is not in any state (it is between two states). In
other words, the state of a Mealy automaton is not well defined at all times.4 This
problem is avoided in the alternative Moore automaton interpretation of FSM,
which associates actions with states rather than transitions. The state of a system is
always well defined in a Moore automaton because actionless transitions can be con-
sidered instantaneous (actions still take time but are executed in a well-defined state
context). More formally, the output of a Moore automaton depends only on the cur-
rent state, whereas the output of a Mealy automaton depends on both the current
state and the current input.

Mealy and Moore automata are mathematically equivalent (i.e., one always can
be transformed into the other). In general, however, a Moore automaton requires
more states to model the same system because a Mealy automaton can use different
transitions (transitions with different triggers) to the same state and can execute dif-
ferent actions. A Moore automaton must use different states to represent conditions
in which different actions are performed.

2.1.7 Execution Model — Run-to-Completion Step

In practice, executing actions always takes some time to complete. The state machine
therefore alternates between two modes: idle — listening for the arrival of the next
event, and busy — responding to an event.

What happens in this model when a high-priority event occurs while the system is
still busy handling the previous (lower priority) event? There are actually only two
possibilities: the preemptive and nonpreemptive handling of events. In the preemp-
tive model, the system can immediately suspend processing of the lower priority
event and commence with the new event. In the nonpreemptive model, before the
system handles a new event it can store it until the previous event has completed pro-
cessing. This model is called run to completion, or RTC.

4. Mealy automata dismiss this problem by simply assuming that actions take no time to execute (the so-called
zero time assumption).

The Essence of Finite State Machines 29
The problem with the preemptive model is that it introduces internal concurrency
within the scope of a single state machine. If preemption is allowed, handling the
high-priority event might modify some internal variables that were in the process of
being modified by the interrupted (low-priority) processing. After resuming, the low-
priority processing might find some of these variables unexpectedly modified, which
could cause errors. This creates a standard concurrency problem that requires some
form of mutual exclusion. However, proper handling of this situation leads to
immense complexity in the general case, rendering the preemptive model impractical.

In the RTC model, the system processes events in discrete, indivisible RTC steps.
Higher priority events cannot interrupt the handling of other events, thereby com-
pletely avoiding the internal concurrency issue. This model also gets around the
problem of the ill-defined state in the Mealy automaton. During event processing, the
system is unresponsive (unobservable), so the ill-defined state during that time has no
practical significance. The RTC model is analogous to the quantum mechanical inter-
pretation of a quantum leap, where a transition between different quantum states
(the quantum leap) is fundamentally indivisible (uninterruptible). Because a quantum
system has to finish one interaction before engaging in another, it always appears to
be in a well-defined quantum state. Such systems are fundamentally unobservable in
the midst of a transition.

RTC does not mean that a state machine has to monopolize the processor until
the RTC step is complete. The preemption restriction only applies to the task context
of the state machine that is already busy processing events. In a multitasking envi-
ronment, other tasks (not related to the task context of the busy state machine) can
be running, possibly preempting the currently executing state machine. As long as
other state machines do not share variables with each other, there are no concurrency
hazards.

State machine formalisms, including UML statecharts, universally assume RTC
execution semantics. The key advantage of RTC processing is simplicity. Its biggest
disadvantage is that, within the scope of a single state machine, event handling can-
not take too long to ensure a timely response to higher priority events. In order to
achieve high responsiveness, timely low-latency and high-priority processing cannot
be mixed in the same state machine with high-latency, low-priority processing.5 This
requirement can sometimes significantly complicate implementation.

5. A state machine can improve responsiveness by breaking up the CPU-intensive processing into sufficiently short
RTC steps.

30 Chapter 2: A Crash Course in Statecharts
2.1.8 State Transition Diagrams

FSMs have an expressive graphical representation in the form of state transition dia-
grams. These diagrams are directed graphs in which nodes denote states and connec-
tors denote transitions.6

For example, Figure 2.1 shows a state transition diagram corresponding to the
computer keyboard model. States are represented as rounded rectangles labeled with
state names. The transitions, represented as arrows, are labeled with the triggering
events followed optionally by the list of triggered actions. The initial transition origi-
nates from the solid circle and specifies the starting state when the system first begins.
Every state diagram should have such a transition, which should not be labeled, since
it is not triggered by an event. However, the initial transition can have associated
actions, such as setting up the extended state variables or initializing the hardware.
Optionally a state transition diagram can also have a final state, indicating the end-
of-life of the system (typically destruction of the object). The final state is represented
as an empty circle with a black dot (a bull’s-eye).

Figure 2.1 State transition diagram representing the computer keyboard FSM

2.2 The Essence of UML Statecharts
UML statecharts are extended state machines with characteristics of both Mealy and
Moore automata. In statecharts, actions generally depend on both the state of the
system and the triggering event, as in a Mealy automaton. Additionally, statecharts
provide optional entry and exit actions, which are associated with states rather than
transitions, as in a Moore automaton.

6. Appendix B contains a succinct summary of the graphical notations used throughout the book, including state
transition diagrams.

CAPS_LOCKCAPS_LOCK

default

capsLocked

ANY_KEY / generate lowercase code

ANY_KEY / generate uppercase code

ANY_KEY[keystrokes > 100000]

ANY_KEY[keystrokes > 100000]

initial
transition

guard

self-
transition

final
state

state

trigger action list

state
transition

The Essence of UML Statecharts 31
2.2.1 Hierarchical States

The most important innovation of statecharts over classical state machines is the
introduction of hierarchically nested states, which is why statecharts are also called
hierarchical state machines (HSMs). The semantics associated with state nesting
(shown in Figure 2.2a)7 are as follows. If a system is in the nested state s11 (called
substate), it also (implicitly) is in the surrounding state s1 (the superstate). This state
machine will attempt to handle any event in the context of state s11 (which is in the
lower level of the hierarchy). However, if state s11 does not prescribe how to handle
the event, the event is not quietly discarded (as in a classical state machine); rather, it
is automatically handled in the higher level context of state s1. This is what is meant
by the system being in state s1 as well as s11. Of course, state nesting is not limited
to one level only, and the simple rule of event processing applies recursively to any
level of nesting.

States that contain other states are called composite states; conversely, states with-
out internal structure are called simple states. A nested state is called a direct substate
when it is not contained by any other state; otherwise, it is referred to as a transi-
tively nested substate.

Because the internal structure of a composite state can be arbitrarily complex, any
hierarchical state machine can be viewed as an internal structure of some (higher
level) composite state. It is conceptually convenient to define one composite state as
the ultimate root of state machine hierarchy. In the UML specification, every state
machine has a top state (the abstract root of every state machine hierarchy), which
contains all the other elements of the entire state machine. The graphical rendering
of this all-enclosing top state is optional [OMG 01].

As you can see, the semantics of hierarchical state decomposition are designed to
allow sharing of behavior. The substates (nested states) need only define the differ-
ences from the superstates (surrounding states). A substate can easily reuse the com-
mon behavior from its superstate(s) by simply ignoring commonly handled events,
which are then automatically handled by higher level states. In this manner, the sub-
states can share all aspects of behavior with their superstates. For example, in a state
model of a simple toaster oven (Figure 2.2b), states toasting and baking share a
common transition to state doorOpen, defined in their common superstate heating.

The aspect of state hierarchy emphasized most often is abstraction — an old and
powerful technique for coping with complexity. Instead of facing all aspects of a
complex system at the same time, it is often possible to ignore (abstract away) some
parts of the system. Hierarchical states are an ideal mechanism for hiding internal
details because the designer can easily zoom out or zoom in to hide or show nested
states. Although abstraction by itself does not reduce overall system complexity, it is

7. The graphical notation of a statechart is a straightforward extension of the state transition diagrams.

32 Chapter 2: A Crash Course in Statecharts
valuable because it reduces the amount of detail you need to deal with at one time.
As Grady Booch [Booch 94] notes:

… we are still constrained by the number of things that we can comprehend at one
time, but through abstraction, we use chunks of information with increasingly greater
semantic content.

However valuable abstraction might be, you cannot cheat your way out of com-
plexity simply by hiding it inside composite states. However, the composite states can
not only hide but also reduce complexity through the reuse of behavior. Without
such reuse, even a moderate increase in system complexity often leads to an explo-
sive increase in the number of states and transitions. Classical nonhierarchical FSMs
can easily become unmanageable, even for moderately involved systems. This is
because traditional state machine formalism inflicts repetitions. For example, if you
transform the statechart from Figure 2.2b to a classical flat state transition diagram,8

you must repeat one transition (from heating to doorOpen) in two places — as a
transition from toasting to doorOpen and from baking to doorOpen. Avoiding
repetitions allows HSMs to grow proportionally to system complexity. As the mod-
eled system grows, the opportunity for reuse also increases and thus counteracts the
explosive increase in states and transitions typical for traditional FSMs. As will
become clear by the end of this chapter, hierarchical states enable capturing symme-
tries of the system.

2.2.2 Behavioral Inheritance

Hierarchical states are more than merely the “grouping of [nested] state machines
together without additional semantics” [Mellor 00]. In fact, hierarchical states have
simple but profound semantics. Nested states are also more than just “great dia-
grammatic simplification when a set of events applies to several substates” [Douglass
99]. The savings in the number of states and transitions are real and go far beyond

8. Such a transformation is always possible because HSMs are mathematically equivalent to classical FSMs.

Figure 2.2 (a) Simple statechart with state s11 nested inside state s1; (b) state

model of a simple toaster oven, in which states toasting and baking

share the common transition from state heating to doorOpen

s1

s11
doorOpen

OPEN_DOOR

(a) (b)
heating

toasting

baking

superstate

substate

The Essence of UML Statecharts 33
less cluttered diagrams. In other words, simpler diagrams are just a side effect of
behavioral reuse enabled by state nesting.

The fundamental character of state nesting comes from the combination of
abstraction and hierarchy, which is a traditional approach to reducing complexity
and is otherwise known in software as inheritance. In OOP, the concept of class
inheritance describes relations between classes of objects. Class inheritance describes
the is a relationship among classes. For example, class Bird might derive from class
Animal. If an object is a bird (instance of the Bird class), it automatically is an ani-
mal, because all operations that apply to animals (e.g., eating, eliminating, reproduc-
tion) also apply to birds. But birds are more specialized, since they have operations
that are not applicable to animals in general. For example, flying applies to birds but
not to fish.9

The benefits of class inheritance are concisely summarized by Gamma and col-
leagues [Gamma+ 95].

Inheritance lets you define a new kind of class rapidly in terms of an old one, by
reusing functionality from parent classes. It allows new classes to be specified by
difference rather than created from scratch each time. It lets you get new
implementations almost for free, inheriting most of what is common from the ancestor
classes.

As you saw in the previous section, all these basic characteristics of inheritance
apply equally well to nested states (just replace the word “class” with “state”),
which is not surprising because state nesting is based on the same fundamental is a
classification as object-oriented class inheritance. For example, in a state model of a
toaster oven, state toasting nests inside state heating. If the toaster is in the
toasting state, it automatically is in the heating state, because all behavior per-
taining to heating applies also to toasting (e.g., the heater must be turned on). But
toasting is more specialized because it has behaviors not applicable to heating in gen-
eral. For example, setting toast color (light or dark) applies to toasting but not to
baking.

In the case of nested states, the is a (is-a-kind-of) relationship merely needs to be
replaced by the is in (is-in-a-state) relationship; otherwise, it is the same fundamental
classification. State nesting allows a substate to inherit state behavior from its ances-
tors (superstates); therefore, it’s called behavioral inheritance. Note that behavioral
inheritance is an original term characteristic of QP and does not come from the UML
specification. Please also note that behavioral inheritance describes the relationship
between substates and superstates, and you should not confuse it with traditional
(class) inheritance applied to entire state machines.

9. Except, of course, the flying fish.

34 Chapter 2: A Crash Course in Statecharts
Identifying the relationship among substates and superstates as inheritance has
many practical implications. Perhaps the most important is the Liskov Substitution
Principle (LSP) applied to state hierarchy. In its traditional formulation for classes,
LSP requires that a subclass can be freely substituted for its superclass. This means
that every instance of the subclass should be compatible with the instance of the
superclass and that any code designed to work with the instance of the superclass
should continue to work correctly if an instance of the subclass is used instead.

Because behavioral inheritance is just a specific kind of inheritance, LSP can be
applied to nested states as well as classes. LSP generalized for states means that the
behavior of a substate should be consistent with the superstate. For example, all
states nested inside the heating state of the toaster oven, (e.g., toasting or bak-
ing) should share the same basic characteristics of the heating state. In particular, if
being in the heating state means that the heater is turned on, then none of the sub-
states should turn the heater off (without transitioning out of the heating state).
Turning the heater off and staying in the toasting or baking states would be
inconsistent with being in the heating state and would indicate poor design (viola-
tion of the LSP).

Compliance with the LSP allows you to build better (more correct) state hierar-
chies and make efficient use of abstraction. For example, in an LSP-compliant state
hierarchy, you can safely zoom out and work at the higher level of the heating state
(thus abstracting away the specifics of toasting and baking). As long as all the
substates are consistent with their superstate, such abstraction is meaningful. On the
other hand, if the substates violate basic assumptions of being in the superstate,
zooming out and ignoring specifics of the substates will be incorrect.

The concept of inheritance is fundamental in software construction. Class inherit-
ance is essential for better software organization and for code reuse, which makes it
a cornerstone of OOP. In the same way, behavioral inheritance is essential for
efficient use of HSMs and for behavior reuse, which makes it a cornerstone of
QP. In Chapter 5, a minicatalog of state patterns shows ways to structure HSMs to
solve recurring problems. Not surprisingly, behavioral inheritance plays the central
role in all these patterns.

2.2.3 Orthogonal Regions

Hierarchical state decomposition can be viewed as the classical exclusive-or applied
to states. For example, if a system is in state heating (Figure 2.2b), it means that it’s
either in state toasting or baking. That is why state hierarchy is alternatively
called or-decomposition and the nested states are called or-states. UML statecharts
also introduce the complementary and-decomposition. Such decomposition means
that a composite state can contain two or more orthogonal regions (orthogonal

The Essence of UML Statecharts 35
means independent in this context) and that being in such a composite state entails
being in all of its orthogonal regions simultaneously [Harel+ 98].

Orthogonal regions address the frequent problem of a combinatorial increase in
the number of states when the behavior of a system is fragmented into independent,
concurrently active parts. For example, apart from the main keypad, a computer
keyboard has an independent numeric keypad. From the previous discussion, recall
the two states of the main keypad already identified: default and capsLocked (Fig-
ure 2.1). The numeric keypad also can be in two states — numbers and arrows —
depending on whether Num Lock is active. The complete state space of the keyboard
in the standard decomposition is the cross product of the two components (main
keypad and numeric keypad) and consists of four states: default–numbers,
default–arrows, capsLocked–numbers, and capsLocked–arrows. However, this
is unnatural because the behavior of the numeric keypad does not depend on the
state of the main keypad and vice versa. Orthogonal regions allow you to avoid mix-
ing the independent behaviors as a cross product and, instead, to keep them separate,
as shown in Figure 2.3.

Note that if the orthogonal regions are fully independent of each other, their com-
bined complexity is simply additive, which means that the number of independent
states needed to model the system is simply the sum k + l + m + …, where k, l, m, …
denote numbers of or-states in each orthogonal region. The general case of mutual
dependency, on the other hand, results in multiplicative complexity, so in general,
the number of states needed is the product k × l × m × ….

Figure 2.3 Two orthogonal regions (main keypad and numeric keypad) of a

computer keyboard

In most real-life situations, however, orthogonal regions are only approximately
orthogonal (i.e., they are not quite independent). Therefore, UML statecharts pro-
vide a number of ways for orthogonal regions to communicate and synchronize their
behaviors. From this rich set of (sometimes complex) mechanisms, perhaps the most

ANY_KEY/generate

lowercase code

default

ANY_KEY/generate

uppercase code

capsLocked

CAPS_LOCKCAPS_LOCK

keyboard

mainKeypad numericKeypad

NUMERIC_KEY/

generate number code

numbers

NUMERIC_KEY/

generate arrow code

arrows

NUM_LOCKNUM_LOCK

36 Chapter 2: A Crash Course in Statecharts
important is that orthogonal regions can coordinate their behaviors by sending event
instances to each other.

Even though orthogonal regions imply independence of execution (i.e., some kind
of concurrency), the UML specification does not require that a separate thread of
execution be assigned to each orthogonal region (although it can be implemented
that way). In fact most commonly, orthogonal regions execute within the same
thread. The UML specification only requires that the designer not rely on any partic-
ular order in which an event instance will be dispatched to the involved orthogonal
regions.

2.2.4 Entry and Exit Actions

Every state in a UML statechart can have optional entry actions, which are executed
upon entry to a state, as well as optional exit actions, which are executed upon exit
from a state. Entry and exit actions are associated with states, not transitions.
Regardless of how a state is entered or exited, all of its entry and exit actions will be
executed. Because of this characteristic, statecharts behave like Moore automata.

The value of entry and exit actions is that they provide means for guaranteed ini-
tialization and cleanup, very much like class constructors and destructors in OOP. For
example, consider the doorOpen state from Figure 2.2b, which corresponds to the
toaster oven behavior while the door is open. This state has a very important safety-
critical requirement: Always disable the heater when the door is open.10 Additionally,
while the door is open, the internal lamp illuminating the oven should light up.

Of course, you could model such behavior by adding appropriate actions (dis-
abling the heater and turning on the light) to every transition path leading to the
doorOpen state (the user may open the door at any time during baking or toasting or
when the oven is not used at all). You also should not forget to extinguish the inter-
nal lamp with every transition leaving the doorOpen state. However, such a solution
would cause the repetition of actions in many transitions. More importantly, such an
approach is error-prone in view of changes to the state machine (e.g., a programmer
working on a new feature, such as top-browning, might simply forget to disable the
heater on transition to doorOpen).

Entry and exit actions allow you to implement the desired behavior in a much
safer, simpler, and more intuitive way. You could specify that the exit action from
heating (see Figure 2.2b) disables the heater, the entry action to doorOpen lights up
the oven lamp, and the exit action from doorOpen extinguishes the lamp. This solu-
tion is superior because it avoids repetitions of those actions on transitions and elim-
inates the basic safety hazard of leaving the heater on while the door is open. The
semantics of exit actions guarantees that, regardless of the transition path, the heater
will be disabled when the toaster is not in the heating state.

10. Commonly such a safety-critical function is (and should be) realized by mechanical interlocks, but for the sake
of this discussion, suppose you need to implement it in software.

The Essence of UML Statecharts 37
Because entry actions are executed automatically whenever an associated state is
entered, they often determine the conditions of operation or the identity of the state,
very much as a class constructor determines the identity of the object being con-
structed. For example, the identity of the heating state is determined by the fact
that the heater is turned on. This condition must be established before entering any
substate of heating because entry actions to a substate of heating, like toasting,
rely on proper initialization of the heating superstate and perform only the differ-
ences from this initialization. Consequently, the order of execution of entry actions
must always proceed from the outermost state to the innermost state.

Not surprisingly, this order is analogous to the order in which class constructors
are invoked. Construction of a class always starts at the very root of the class hierar-
chy and follows through all inheritance levels down to the class being instantiated.
The execution of exit actions, which corresponds to destructor invocation, proceeds
in the exact reverse order, starting from the innermost state (corresponding to the
most derived class).

Please note, however, that although entry and exit actions are closely related to
class constructors and destructors, they are also significantly different. The main dif-
ference comes about because changing the identity of a class instance (object)
involves complete destruction followed by complete reconstruction, even if the initial
and final objects are closely related (have common ancestors). For example, if you
need to exchange an instance of a Bird class with an instance of a Fish class (e.g., in
a database application), then you must completely destroy the bird object and create
a fish object from scratch, even though they both descend from the common ancestor
class Animal (Figure 2.4a). In a statechart, such a change of identity corresponds to
a state transition; however, in contrast to objects, the change does not require com-
plete destruction and recreation. For example, a state transition from toasting to
baking (both nested inside the heating state) involves only the execution of the
toasting exit actions followed by the baking entry actions but does not involve
executing the heating exit or entry actions, simply because this transition never
leaves the heating state (Figure 2.4b).

2.2.5 Transition Execution Sequence

State nesting combined with entry and exit actions significantly complicates the state
transition semantics in statecharts compared to simple FSMs. When dealing
with composite states and orthogonal regions, the simple term “current state”
can be quite confusing. In an HSM, more than one state can be active at once. If
the state machine is in a simple state that is contained in a composite state
(which is possibly contained in a higher level composite state, and so on), all the
composite states that either directly or transitively contain the simple state are
also active. Furthermore, because some of the composite states in this hierarchy

38 Chapter 2: A Crash Course in Statecharts
might have orthogonal regions, the current active state is actually represented by
a tree of states starting with the single top state at the root down to individual
simple states at the leaves. The UML specification refers to such a state tree as
state configuration [OMG 01].

Every state transition, except for internal transitions (see the next section), causes
the statechart to exit a source state configuration and enter a target state configura-
tion. The UML specification prescribes that taking a state transition involves execut-
ing the following actions in the following sequence [OMG 01]:

• exit actions of the source state configuration,
• actions associated with the transition, and
• entry actions of the target state configuration.
This three-step transition rule is easy to interpret when the source and target state

are both simple and nest at same level, as in the transition between states default
and capsLocked in Figure 2.3. However in statecharts, state transition can connect
any two states directly, including composite states at different levels of nesting. The
problem is to discover which states need to be exited in step one. The UML specifica-
tion prescribes that the first step involves exiting all nested states from the current
active state (which might be a direct or transitive substate of the source state) up to,
but not including, the least common ancestor (LCA) state of the source and target
states. As the name indicates, the LCA is the lowest composite state that is simulta-
neously a superstate (ancestor) of both the source and the target states. As described
before, the order of execution of exit actions is always from the most deeply nested
state (the current active state) up the hierarchy to the LCA (but without exiting the
LCA). In the last step (after executing actions associated with the transition), the tar-
get state needs to be entered. Executing entry actions commences from the level
where the exit actions left off (i.e., from inside the LCA), down the state hierarchy to

Figure 2.4 (a) Changing the identity of object :Bird into :Fish requires complete

destruction and recreation of the entire object, including the part

inherited from the common Animal superclass; (b) state transition

from toasting to baking does not require exit and reentry into the

common heating superstate

heating

baking

(a) (b)
Animal

Bird Fish

:Bird :Fish

toasting

The Essence of UML Statecharts 39
the target state. If the target state is composite, then its submachine is recursively
entered via the default transition or the history mechanism (see the description of
history pseudostates coming up in Section 2.2.7).

2.2.6 Internal Transitions

Very commonly, an event causes only some internal actions to execute but does not
lead to a change of state (state transition). In this case, all actions executed comprise
the internal transition. For example, when you type on your keyboard, it responds
by generating different character codes. However, unless you hit the Caps Lock key,
the state of the keyboard does not change (no state transition occurs). In UML, this
situation should be modeled with internal transitions, as shown in Figure 2.3. The
UML notation for internal transitions follows the general syntax used for exit (or
entry) actions, except instead of the word “entry” (or “exit”) the internal transition
is labeled with the triggering event (e.g., see the internal transition triggered by the
ANY_KEY event in Figure 2.3).

In the absence of entry and exit actions, internal transitions would be identical to
self-transitions (transitions in which the target state is the same as the source state).
In fact, in a classical Mealy automaton, actions are associated exclusively with state
transitions, so the only way to execute actions without changing state is through a
self-transition (depicted as a directed loop in Figure 2.1). However, in the presence of
entry and exit actions, as in UML statecharts, a self-transition involves (1) the execu-
tion of exit actions followed by (2) the execution of actions associated with the tran-
sition, and finally (3) the execution of entry actions. Because a self-transition
involves the execution of exit and entry actions in statecharts, it is distinctively dif-
ferent from an internal transition.

In contrast to a self-transition, no entry or exit actions are ever executed as a result
of an internal transition, even if the internal transition is executed at a higher level of
the hierarchy than the currently active state. Internal transitions are inherited by the
substates (as any other behavior) and act as if they were defined directly at all the
lower levels of hierarchy (unless they were not overridden explicitly).

2.2.7 Pseudostates

Because statecharts started as a visual formalism [Harel 87], some nodes in the dia-
grams other than the regular states turned out to be useful for implementing various
features (or simply as a shorthand notation). The various “plumbing gear” nodes are
collectively called pseudostates. More formally, a pseudostate is an abstraction that
encompasses different types of transient vertices (nodes) in the state machine graph.

The UML specification [OMG 01] defines the following kinds of pseudostates.

40 Chapter 2: A Crash Course in Statecharts
• The initial pseudostate (shown as a black dot) represents a source for default
transition. There can be, at most, one initial pseudostate in a composite state.

• The shallow-history pseudostate (shown as a circled letter “H”) is a shorthand
notation that represents the most recent active direct substate of its containing
state. A transition coming into the shallow-history vertex (called a transition to
history) is equivalent to a transition coming into the most recent active substate of
a state. A transition can originate from the history connector to designate a state
to be entered in case a composite state has no history yet (has never been active
before).

• The deep-history pseudostate (shown as a circled “H*”) is similar to shallow-his-
tory, except it represents the whole, most recent state configuration of the com-
posite state that directly contains the pseudostate.

• The join pseudostate (shown as a vertical bar) serves to merge several transitions
emanating from source vertices in different orthogonal regions.

• The fork pseudostate (represented identically as a join) serves to split an incoming
transition into two or more transitions terminating in different orthogonal
regions.

• The junction pseudostate (shown as a black dot) is a semantics-free vertex that
chains together multiple transitions. A junction is like a Swiss Army knife: it per-
forms various functions. Junctions can be used both to merge multiple incoming
transitions (from the same concurrent region) and to split an incoming transition
into multiple outgoing transition segments with different guards. The latter case
realizes a static conditional branch because the use of a junction imposes static
evaluation of all guards before the transition is taken.

• The choice pseudostate (shown as an empty circle or a diamond) is used for
dynamic conditional branches. It allows the splitting of transitions into multiple
outgoing paths, so the decision on which path to take could depend on the results
of prior actions performed in the same RTC step.

2.2.8 Refined Event Handling

The UML specification defines four kinds of events, each one distinguished by a spe-
cific notation.
• SignalEvent represents the reception of a particular (asynchronous) signal. Its for-

mat is signal-name '(' comma-separated-parameter-list ')'.
• TimeEvent models the expiration of a specific deadline. It is denoted with the key-

word after, followed by an expression specifying the amount of time.

The Essence of UML Statecharts 41
• CallEvent represents the request to synchronously invoke a specific operation. Its
format is operation-name '(' comma-separated-parameter-list ')'.

• ChangeEvent models an event that occurs when an explicit Boolean expression
becomes true. It is denoted with the keyword when, followed by a Boolean
expression.
A SignalEvent is by far the most common event (and the only one used in classical

FSMs). Even here, however, the UML specification extends traditional FSM seman-
tics by allowing the specified signal to be a subclass of another signal, resulting in
polymorphic event triggering. Any transition triggered by a given signal event is also
triggered by any subevent derived directly or indirectly from the original event.

Additionally, the UML specification provides syntax for deferring events. A state
can specify a list of deferred events. If a received event matches one of the types in
the deferred list of that state, it is not dispatched but remains in the event queue until
a state is reached where the event is not deferred.

2.2.9 Semantics versus Notation

Statecharts have been invented as “a visual formalism for complex systems” [Harel
87], so from their inception, they have been inseparably associated with graphical
representation in the form of statechart diagrams. However, it is important to under-
stand that the concept of HSMs transcends any particular notation, graphical or tex-
tual. The UML specification [OMG 01] makes this distinction apparent by clearly
separating state machine semantics from the notation.

Nevertheless, many elements of statecharts and much of the semantics are heavily
biased toward graphical notation. For example, state diagrams poorly represent the
sequence of processing, be it order of evaluation of guards or order of dispatching
events to orthogonal regions. The UML specification sidesteps these problems by
putting the burden on the designer not to rely on any particular sequencing. How-
ever, as you will see in the following chapters, when you implement statecharts (e.g.,
in C or C++), you will have full control over the order of execution, so the restric-
tions imposed by statecharts will be unwarranted. Similarly, statechart diagrams
require a lot of plumbing gear (a.k.a. pseudostates, like joins, forks, junctions,
choicepoints, etc.) to represent the flow of control graphically. These elements are
nothing but the old flowchart in disguise, which structured programming techniques
rendered obsolete11 a long time ago.

However, the notation of UML statecharts is not purely visual, since it requires a
large amount of textual information (e.g., the specification of actions and guards).
The exact syntax of action and guard expressions isn’t defined in the UML specifica-

11. You can find a critique of flowcharts in Brooks [Brooks 95].

42 Chapter 2: A Crash Course in Statecharts
tion, so many people use either structured English or, more formally, expressions in
an implementation language such as C, C++, or Java [Douglass 99b]. Practically, this
means that UML statechart notation depends heavily on the specific programming
language.

This is not to criticize the graphical notation of statecharts. In fact, it is remark-
ably expressive and can scarcely be improved. Rather, the aforementioned difficulties
stem from the inherent difficulty in visualizing the software concepts themselves. As
Brooks [Brooks 95] writes:

More fundamentally, … software is difficult to visualize. Whether we diagram control
flow, variable scope nesting, variable cross-references, data flow, hierarchical data
structures, or whatever, we feel only one dimension of the intricately interlocked
software elephant.

Later in the text, he responds to Harel:

 … software structure is not embedded in three-space, so there is no natural mapping
from a conceptual design to a diagram, whether in two dimensions or more … one
needs multiple diagrams [multiple views], each conveying some distinct aspect, and
some aspects don’t diagram well at all.

2.2.10 Statecharts versus Flowcharts

It is important to distinguish statecharts from flowcharts. The UML specification
adds to the confusion in this respect by including activity graphs in the state machine
package [OMG 01]. Activity graphs are essentially elaborate flowcharts.

Figure 2.5 Comparison of (a) Mealy state machine, (b) Moore state machine, and

(c) activity graph (flowchart)

s1

e1/action1()

(a)

s2

s3
e2/action2()

e3/action3()

exit/action1()
s1

e1

(b)

e2

e3

exit/action3()
s3

do X

do Y do Z

(c)

exit/action2()
s2

The Essence of UML Statecharts 43
Figure 2.5 shows a comparison of Mealy and Moore state machines with a flow-
chart. State machines (a and b) perform actions in response to explicit triggers. In
contrast, the flowchart (c) does not need explicit triggers; rather, it transitions from
node to node in its graph automatically upon completion of an activity.

Compared to the statechart, a flowchart reverses the sense of vertices and arcs
[Simons 00]. In a statechart, the processing is associated with the arcs, whereas in a
flowchart, it is associated with the vertices (Figure 2.5 attempts to show that reversal
of roles by aligning the arcs of the statecharts with the processing stages of the flow-
chart).

You can compare a flowchart to an assembly line in manufacturing because the
flowchart describes the progression of some task from beginning to end. A statechart
generally has no notion of such a progression. A computer keyboard (Figure 2.1), for
example, is not in a more advanced stage when it is in the capsLocked state, com-
pared to being in the default state. A state in a state machine is an efficient way of
specifying constraints of the overall behavior of a system, rather than a stage of pro-
cessing.

2.2.11 Statecharts and Automatic Code Synthesis

Statecharts provide sufficiently well-defined semantics for building executable
state models. Indeed, several CASE tools on the market support various versions
of statecharts (see the sidebar “CASE Tools Supporting Statecharts” on page 44).
The commercially available design automation tools typically not only automatically
generate code from statecharts but also enable debugging and testing of the state
models at the graphical level [Douglass 99].

But what does automatic code generation really mean? And, more impor-
tantly, what kind of code is actually generated by such statechart-based tools?

Many people understand automatic code synthesis as the generation of a pro-
gram to solve a problem from a statement of the problem specification. State-
chart-based tools cannot provide this because a statechart is just a higher level
(mostly visual) solution rather than the statement of the problem.

As far as the automatically generated code is concerned, the statechart-based
tools can autonomously generate only so-called housekeeping code [Douglass
99]. The modeler explicitly must provide all the application-specific code, such
as action and guard expressions, to the tool. The role of housekeeping code is to
“glue” the various action and guard expressions together to ensure proper state
machine execution in accordance with the statechart semantics. For example,
synthesized code typically handles event queuing, event dispatching, guard
evaluation, or transition chain execution (including exit and entry of appropri-
ate states). Almost universally, the tools also encompass some kind of a real-time

44 Chapter 2: A Crash Course in Statecharts
framework (see Part II of this book) that integrates tightly with the underlying
operating system.

2.3 Examples of State Models
This section presents a short case study of two state models: the Quantum Calcu-
lator introduced in Chapter 1 and a hydrogen atom. The purpose of the first example
is a step-by-step guide to developing a nontrivial statechart. The second example illu-
minates the deep analogy between HSMs and quantum systems and shines new light
on the true role of state nesting and behavioral inheritance.

2.3.1 Quantum Calculator

In Chapter 1, I promised I’d come back to the Quantum Calculator statechart and
explain it in more detail. Now, after introducing the most important elements of stat-
echarts, is the right time to do so.

First, I want to comment on the high complexity of the calculator statechart
from Figure 1.3 in Chapter 1. The calculator operates broadly as follows: a user
enters an operand, then an operator, then another operand, and finally clicks the
Equals button to get a result. From the programming perspective, this means that the
calculator needs to parse12 numerical expressions, which in itself is not trivial. For
example, the following grammar formally defines such expressions.

CASE Tools Supporting Statecharts

Some of the CASE tools with support for statecharts currently available on the market.
• Statemate and Rhapsody (I-Logix, www.ilogix.com)
• Rational Suite Development Studio Real-Time (Rational Software Corp.,

www.rational.com)
• BetterState (WindRiver Systems, www.wrs.com)
• Stateflow (MathWorks, www.mathworks.com)
• VisualState (IAR, www.iar.com)
• ObjectGeode (Telelogic, www.telelogic.com)

12. Parsing and state machines are related. In fact, most parsers operate as finite state machines.

Examples of State Models 45
Listing 2.1 Grammar of numerical expressions parsed by the calculator

The problem is not only to correctly parse numerical expressions but to do it
interactively (on the fly). The user can provide any symbol at any time, not necessar-
ily only the symbols allowed by the grammar in the current context. It is up to the
application to ignore13 such symbols. In addition, the application must handle inputs
not related to parsing expressions, for example Cancel (C), or Cancel Entry (CE).
These complications add up to a nontrivial problem, and it is not surprising that the
bottom-up approach of the Visual Basic Calculator is inadequate in this case.

Figure 2.6 The first two steps in elaborating the Quantum Calculator statechart

Figure 2.6 shows the first steps in elaborating the Quantum Calculator state-
chart.14 In the first step (a) the state machine attempts to realize the primary function
of the system (the primary use case), which is to compute the expression operand1
operator operand2 equals …. The state machine starts in the operand1 state, whose
function is to ensure that the user can only enter a valid operand. This state obvi-
ously needs an internal submachine to accomplish this goal, but ignore that for now.
The criterion for transitioning out of operand1 is entering an operator (+, -, *, or
/). The statechart then enters the opEntered state, in which the calculator waits for
the second operand. When the user clicks a digit (0 … 9) or a decimal point, the state
machine transitions to the operand2 state, which is similar to operand1. Finally, the

 1 expression ::= operand1 operator operand2 ’=’
 2 operand1 ::= expression | [’+’ | ’-’] number
 3 operand2 ::= [’+’ | ’-’] number
 4 number ::= {’0’ | ’1’ | ... ’9’}* [’.’ {’0’ | ’1’ | ... ’9’}*]
 5 operator ::= ’+’ | ’-’ | ’*’ | ’/’

13. This particular application ignores invalid inputs. Often, a better approach is to actively prevent generation of
the invalid inputs in the first place (e.g., by disabling invalid options).

(a)

operand1

opEntered

PLUS, MINUS,

MULTIPLY,

DIVIDE

0..9,

POINT

EQUALS

(b)

opEntered

OPER

0..9,

POINT

EQUALS

result

OPER C

0..9,

POINT

operand2

operand1

operand2

14. Designing a statechart is not a strict science. You can arrive at a correct design in many different ways. This is
just one of them.

46 Chapter 2: A Crash Course in Statecharts
user clicks ‘=’, at which point the calculator computes and displays the result. It then
transitions back to the operand1 state to get ready for another computation.

The simple state model from Figure 2.6a has a major problem, however. When
the user clicks ‘=’ in the last step, the state machine cannot transition directly to
operand1, because this would erase the result from the display. You need another
state, result, in which the calculator pauses to display the result (Figure 2.6b).
Three things can happen in the result state: (1) the user clicks an operator button
to use the result as the first operand of a new computation,15 (2) the user clicks Can-
cel (C) to start a completely new computation, or (3) the user enters a number or a
decimal point to start entering the first operand.

Figure 2.6b illustrates a trick worth remembering — the consolidation of signals
PLUS, MINUS, MULTIPLY, and DIVIDE into a higher level signal OPER (operand). This
transformation avoids repetition of the same group of triggers on two transitions
(from operand1 to opEntered and from result to opEntered). Although most
events are generated externally to the statechart, in many situations it is still possible
to perform simple transformations before dispatching them (e.g., see Listing 1.2 in
Chapter 1). Such transformations often simplify designs more than the slickest state
and transition topologies.

Figure 2.7 Applying state nesting to factor out the common Cancel (C) transition

The state machine from Figure 2.6b accepts the Cancel command only in the
result state. However, the user expects to be able to cancel and start over at any
time. The statechart in Figure 2.7a adds this feature in a naïve way. A better solution
is to factor out the common transition into a higher level state calc and let all sub-
states reuse the Cancel transition through behavioral inheritance. Figure 2.7b shows
this solution, except that it implements Cancel as an empty self-transition16 rather
than as a transition from the calc to operand1 substate. This solution enables even
more reuse, because a self-transition triggers exit and then reentry to the state (see

15. See line 2 of Listing 2.1.

calc

C

(a)

operand1

opEntered

operand2

result

OPER

0..9,
POINT

OPER C

EQUALS

C

C (b)

C
operand1

opEntered

operand2

result

OPER

0..9,
POINT

OPER

EQUALS

0..9,
POINT

0..9,
POINT

16. Empty self-transition is a useful idiom for resetting a composite state.

Examples of State Models 47
Section 2.2.6, “Internal Transitions”), thus reusing the initialization that these
actions perform anyway.

The states operand1 and operand2 need submachines to parse floating-point
numbers (Figure 2.8). These submachines consist of three substates. The zero sub-
state is entered when the user clicks ‘0’. Its function is to ignore additional zeros that
the user might try to enter (so that the calculator displays only one ‘0’). The function
of the int substate is to parse the integer part of a number. This state is entered
either from outside or from the zero peer substate (when the user clicks ‘1’ through
‘9’). Finally, the substate frac parses the fractional part of the number. It is entered
either from outside or from both of its peer substates when the user clicks the deci-
mal point.

Figure 2.8 Internal submachine of states operand1 and operand2

Exercise 2.1 Integrate composite states operand1 and operand2 into the statechart
from Figure 2.7b (i.e., draw the calculator statechart with all levels of
detail).

Exercise 2.2 The quantum calc0 application on the accompanying CD-ROM imple-
ments the statechart from Figure 2.7b. Find and execute this application.
Test how it performs and correlate its behavior with the underlying stat-
echart. Examine the source code.

The last step brought the calculator statechart to the point in which it can actually
compute expressions (Exercise 2.2). However, it can handle only positive numbers.
In the next step, I will add handling of negative numbers, which turns out to be per-
haps the toughest problem in this design because the same button (–) represents the
binary operator of subtraction in some contexts and the unary operator of negation
in others.

In only two possible contexts can ‘–’ unambiguously represent negation rather
than subtraction: (1) in the opEntered state (as in the expression 2*–2 =) and (2) at

operandX

zeroX
0/
1..9/

intX

0/
1..9/

fracX1_9 POINT

POINT

POINT1..90

48 Chapter 2: A Crash Course in Statecharts
the beginning of a new computation (as in the expression –2*2 =). The solution to
the first case (shown in Figure 2.9a) is simpler. You need one more state, negated2,
which is entered when the operator is MINUS (note the use of the guard). Upon
entry, this state sets up the display to show ‘–0’ and subsequently does not clear the
display when transitioning to the operand2 state. This behavior is different from
opEntered because, in this state, the display must be cleared to prepare for the sec-
ond operand.

Figure 2.9 Two cases of handling negative numbers

The second case in which ‘–’ represents negation is trickier because the beginning
of a new computation specification is much more subtle. Here, it indicates the situa-
tion just after launching the application or after the user clicks Cancel, but not when
the calculator displays the result from the previous computation. Figure 2.9b shows
the solution. State begin is separated from operand1 to capture the behavior spe-
cific to the beginning of a new computation (note the initial transition pointing now
to begin rather than to operand1). The rest of the solution is analogous to the first
case, except now state begin plays the role of opEntered.

Exercise 2.3 The state machine fragment in Figure 2.9b still offers opportunity for
reuse of the identical transition from result to operand1 and from
begin to operand1. Factor out this transition and place it in a common
superstate, ready.

The calculator is almost ready now. The final touches (that I leave as an exercise)
include adding Cancel Entry transitions in appropriate contexts and adding a transi-
tion to the final state to terminate the application.

The complete Quantum Calculator statechart is shown in Figure 1.3 in Chapter 1.
Executable applications with compete source code (versions in C and C++) are avail-
able on the accompanying CD-ROM.

(a)

opEntered

negated2

OPER[keyId==MINUS]

operand2

0..9,
POINT

0..9,
POINT

negated1

operand1
0..9,
POINT

0..9,
POINT

result

OPER EQUALS

begin
OPER[keyId==MINUS]

(b)

0..9,
POINT

Examples of State Models 49
2.3.2 Hydrogen Atom

State behavior can be found in many systems, such as GUIs, keyboards, toaster
ovens, and countless more. Indeed, state behavior is a vital aspect of virtually every
computer system. However, the significance of state machines goes beyond software.

At the turn of the twentieth century, physicists realized that at the most funda-
mental level, all microscopic objects exhibit state behavior, rather than the continu-
ous behavior predicted by classical mechanics. This discovery led directly to the
formulation of quantum mechanics. As explained in the sidebar “Quantum States of
the Hydrogen Atom” on page 51, the quantum mechanical description of a micro-
scopic system leads naturally to state hierarchies that, by nature, comply with the
LSP for states. Moreover, the quantum analogy clearly shows the fundamental role
of behavioral inheritance, which captures symmetries of the system.

Because of this natural fit, virtually every quantum system provides a good case
for state modeling. For instance, Figure 2.10 shows an overly simplified state model
of a hydrogen atom.17 This state diagram demonstrates many elements of the UML
notation. The atom starts its life in the ground state 1S (I use traditional spectro-
scopic notation for naming states), as indicated by the top-level initial transition.
Entry actions of the 1S state set the energy E of the system to –13.6eV (a negative
sign indicates binding energy), the angular momentum l to 0, and the projection of
the angular momentum m to 0, which establishes the quantum mechanical identity
of this state. The outgoing transitions from the ground state are triggered by photons
g (signal events) of appropriate energy (indicated as a parameter associated with
every “g” event). Consequently, the atom absorbs only specific (resonant) photons
and “ignores” all others. The spontaneous photon emission from excited states is
modeled by means of time events18 (denoted by the keyword after followed by a
time indication). Please note how state entry actions and actions associated with the
transitions work together to ensure energy conservation.

The spontaneous, high-level transitions correspond to the full degeneration of
hydrogen energy levels. This degeneration can be partially removed by inserting the
atom into an external magnetic field (Zeeman effect) to lower the symmetry of the
system. A system with lower symmetry generally requires a more complex state
machine with more transitions connecting directly to more specific (more deeply
nested) substates than a system with higher symmetry. Indeed, the Zeeman effect
introduces whole families of transitions connecting substates of different magnetic

17. Theoretically, the hydrogen atom has an infinite number of states (energy levels), so strictly speaking, it cannot
be modeled by a finite state machine. However, most relevant aspects of hydrogen behavior can be modeled by
considering just a few of the lowest energy levels.

18. The indicated lifetimes of the corresponding decay paths are just examples and do not correspond to actual
measurements.

50 Chapter 2: A Crash Course in Statecharts
quantum number m. One example of such a family for the 3D → 2P transitions is
shown in Figure 2.10. This family of transitions is distinguished by the guard
[B != 0] on transition segments leading to a junction pseudostate. This guard
enables these specific decay channels only in the presence of an external magnetic
field (otherwise the state decays via the high-level generic transitions inherited from
the superstate). Conservation of angular momentum forbids many transitions (e.g.,
3D–2 → 2P+1), because a photon can only carry one unit of angular momentum, so
the magnetic quantum number can change by –1, 0, or +1 (but not by +3). This con-
straint is clearly visible in that, at most, three transitions merge at any given junction.

Although the statechart diagram from Figure 2.10 captures the basic behavior of
the hydrogen atom quite well, it also points out the main shortcomings of the graph-
ical notation. Although the diagram is by no means complete, it is already quite clut-
tered. Many transitions, especially those corresponding to the reduced symmetry

Figure 2.10 Simplified state model of a hydrogen atom

entry/E=-13.6e V;
 l =0; m=0;

1S

entry/E=-3.4e V

2

entry/l =0; m=0;

2S
entry/l =1;

2P

entry/m=-1;
2P-1

entry/m=0;
2P0

entry/m=+1;
2P+1

entry/E=-1.511eV

3

entry/l =1;

3P

entry/m=-1;
3P-1

entry/m=0;
3P0

entry/m=+1;
3P+1

entry/l=2;

3D

entry/m=-2;
3D-2

entry/m=-1;
3D-1

entry/m=0;
3D0

entry/m=+1;
3D+1

entry/m=+2;
3D+2

entry/l =0; m=0;

3S

ground state

g(12.1e V)/
absorb g

after 1E-18s/
emit g(1.89eV)

after 1E-20s/
emit g(12.1e V)

after 1E-19s/
emit g(10.2e V) g(10.2e V)/

absorb g

g(1.89e V)/
absorb g

after 1E-18s [B!=0] after 1E-18s [B!=0]
after 1E-18s [B!=0]

Examples of State Models 51
case [B != 0], are intentionally omitted just to make this graph readable. UML
notation addresses the clutter arising in virtually every nontrivial state diagram by
allowing stubbed transitions and submachine states (besides, of course, using
abstraction to hide the internal structure of composite states) [OMG 01]. Please
note, however, that the difficulties with representation come from graphical notation
rather than the fundamental inability of statecharts (as a concept) to scale up to han-
dle the behavior of complex systems.

Quantum States of the Hydrogen Atom

In quantum mechanics, all physically observable quantities are associated with linear
(Hermitean) operators, called observables. An outcome of a physical measurement is
always an eigenvalue of such an operator, and the corresponding eigenvector is the
quantum state of the microscopic system at the time of measurement. Typically, more
than one physical quantity can be measured in a given quantum state, which means
that this state is a simultaneous eigenvector of many observables (Hermitean opera-
tors). As you will see, this naturally leads to state hierarchy.

For example, in a quantum mechanical description of the hydrogen atom, the
observables typically are Hamiltonian (H), orbital angular momentum (L2), and pro-
jection of the angular momentum on the third axis (Lz). These three operators have
common eigenvectors because they are commutative. This is not always the case; for
example, operators of position and momentum (or energy and time) are not commuta-
tive and cannot be measured simultaneously, which is known as the Heisenberg uncer-
tainty principle.

The simultaneous eigenvector of the three operators is denoted as |nlm> (Dirac’s
notation), where n is the principal quantum number, l is the orbital quantum number,
and m is the magnetic quantum number. The eigenvector |nlm> fulfills the following
eigenvalue equations.

The quantum state |nlm> is thus hierarchical, with three levels of nesting. For every
given state of energy (principal quantum number n), there are n substates of the
orbital angular momentum (orbital quantum number l). Each substate, in turn, has
2l + 1 different substates corresponding to different projections of the angular
momentum on the third axis (magnetic quantum number m).

H nlm| 〉 13.6eV–

n2
--------------------- nlm| 〉=

n = 1, 2, 3, …

L2 nlm| 〉 h– 2l l 1+() nlm| 〉= l = 0, 1, 2, … n – 1

LZ nlm| 〉 h–m nlm| 〉= m = –l, –l + 1, … l

52 Chapter 2: A Crash Course in Statecharts
Exercise 2.4 Closer inspection of hydrogen spectra reveals so-called fine structure,
caused by a small magnetic moment associated with electron spin. The
spin is an intrinsic angular momentum, with only two possible projec-
tions on the quantization axis (sz = ±1/2h–). How can you include electron
spin in the state model of the hydrogen atom? Hint: Electron spin is
mostly orthogonal to the basic electron–proton interaction.

2.4 Summary
Most reactive systems have state behavior, which means the response of a system
depends not only on the nature of a stimulus but on the history of the previous
stimuli. Such behavior is commonly modeled as FSMs or automata. FSMs effi-
ciently capture overall system behavior and any applicable constraints.

States are means of partitioning behavior into nonoverlapping chunks (the
divide and conquer strategy). The concept of state is a very useful abstraction of
system history, capable of capturing only relevant sequences of stimuli (and ignoring
all irrelevant ones). In extended state machines (state machines with “memory”),
state corresponds to qualitative aspects of system behavior, whereas extended state
variables (program memory) correspond to the quantitative aspects.

An event is a type of instantaneous occurrence that can cause a state machine to
perform actions. Event instances are means of conveying such occurrences to state

In these equations, all (direct or transitive) substates of a given energy state corre-
spond to exactly the same energy eigenvalue (–13.6eV/n2). In quantum mechanics,
such a state is called degenerate. Degeneration is always an indication of some symme-
try of the system. For example, the degeneration of the angular momentum state
comes from spherical symmetry of the atom. This observation is very important:
Behavioral inheritance resulting from the nesting of states corresponds to symmetry of
the system.

A quantum mechanical state hierarchy naturally complies with the LSP for states.
For example, if an atom is in a given quantum state of the projection operator Lz, it
simultaneously is in the quantum state of angular momentum operator L2, and simul-
taneously is in the quantum state of the Hamiltonian H. In such a hierarchy, you can
efficiently use abstraction. For example, you can abstract away angular momentum
and consider only energy levels of the atom (e.g., to understand its energy spectrum).
This abstraction corresponds to zooming out to the highest level of nesting. On the
other hand, if you destroy the spherical symmetry by subjecting the atom to an exter-
nal magnetic field (e.g., to study the Zeeman effect), you might be interested in the
lowest level substates of the magnetic quantum number.

Summary 53
machines. Events can have parameters, which convey not only the occurrence of
something interesting but the quantitative information regarding this occurrence.
Upon reception of an event instance, a state machine responds by performing actions
(executing code). The response might include changing state, which is called a state
transition. Classical FSMs have two complementary interpretations of actions and
transitions. In Mealy automata, actions are associated with transitions, whereas in
Moore automata, actions are associated with states.

State machine formalisms universally assume the RTC execution model. In this
model, all actions triggered by an event instance must complete before the next event
instance can be dispatched to the state machine, meaning the state machine executes
uninterruptible steps (RTC steps) and starts processing each event in a stable state
configuration.

UML statecharts are an advanced formalism for specifying state machines. The
formalism is a variant of extended state machines with characteristics of both Mealy
and Moore automata. Statecharts include notations of nested hierarchical states and
orthogonal regions and extend the notation of actions.

The most important innovation of statecharts over classical FSMs is the introduc-
tion of hierarchical states. The semantics of state nesting allows substates to define
only differences in behavior from the superstates, thus promoting sharing and reuse
of behavior. The relation between a substate and its superstate has all the characteris-
tics of inheritance and is called behavioral inheritance in QP. Behavioral inheritance
is as fundamental as class inheritance and allows the building of whole hierarchies of
states, as with class taxonomies. The properly designed state hierarchies comply with
the LSP, extended for states.

Statecharts introduce state entry and exit actions, which provide the means for
guaranteed initialization and cleanup, very much as constructors and destructors do
for classes. Entry actions are always executed starting with the outermost state,
which is analogous to class constructors executed from the most general class. The
exit actions, similar to destructors, are always executed in exact reverse order.

Entry and exit actions combined with state nesting complicate transition
sequence. The general rule is to (1) execute exit actions from the source state, (2)
execute actions associated with transitions, and (3) execute entry actions to the tar-
get. The only exceptions to this rule are internal transitions, which never cause the
execution of exit or entry actions and therefore are distinctively different from self-
transitions.

Statecharts were first invented as a visual formalism; therefore, they are
heavily biased toward graphical representation. However, it is important to dis-
tinguish the underlying concept of the HSM from statechart notation.

The significance of HSMs goes beyond software. For example, state hierar-
chies arise naturally in microscopic systems governed by the laws of quantum

54 Chapter 2: A Crash Course in Statecharts
mechanics, demonstrating the fundamental character of behavioral inheritance,
which is the primary means of representing symmetries within reactive systems.

3

Chapter 3

Standard State Machine

Implementations

An expert is a man who has made all the mistakes which can be made,
in a narrow field.
— Niels Bohr

Implementing state machines is not as easy as it looks. Even with classical nonhierar-
chical FSMs, you must make an amazing number of design decisions and trade-offs:

• How do you represent events? How about events with parameters?
• How do you represent states?
• How do you represent transitions?
• How do you dispatch events to the state machine?

When you add state hierarchy, exit/entry actions, and transitions with guards, the
design becomes anything but trivial.

In this chapter, I focus on standard implementation techniques, which you can
find in the literature or in the working code. They are mostly applicable to the classi-
cal flat (nonhierarchical) extended state machines because there are hardly any stan-
dard implementations of HSMs.
55

56 Chapter 3: Standard State Machine Implementations
Typical implementations of state machines in high-level programming languages,
such as C or C++, include

• the nested switch statement,
• the state table,
• the object-oriented State design pattern, and
• other techniques that are mostly combinations of the previous three.

3.1 State Machine Interface
The majority of published state machine code presents state machines intimately
intertwined with a specific concurrency model and a particular event dispatching
policy. For example, embedded systems engineers1 often present their state machines
inside polling loops or interrupt service routines (ISRs) that extract events directly
from hardware or global variables. GUI programmers are typically more disciplined
in this respect (although they seldom use state machines, as demonstrated in the
Visual Basic Calculator example in Chapter 1), because a typical GUI environment
(e.g., Microsoft Windows) handles event queuing and dispatching for the program-
mer. However, a typical GUI API — for instance, WinMain() — provides only a
fixed set of event parameters and is not generally applicable outside the GUI domain
(after all, the most complex external occurrence that a GUI needs to handle is a
mouse click).

However, it is better to separate the state machine code from a particular concur-
rency model and to provide a flexible way of passing signals and event parameters.
Therefore, implementations in this chapter provide a simple and generally applicable
interface to a state machine. In this respect, the implementations presented are not
typical because a state machine does not have a standard interface.

The interface I propose consists of just three methods: init(), to take a top-level
initial transition; dispatch(), to dispatch an event to the state machine; and
tran(), to take an arbitrary state transition. In this simple model, a state machine is
externally driven by invoking init() once2 and dispatch() repetitively. Part II of
this book shows how this interface can be used in conjunction with preemptive mul-
titasking or in a background loop.

To focus the following discussion, consider the state diagram shown in Figure 3.1.
The state machine models a lexical parser that distinguishes C-style comments (/*
… */) from code and counts the number of comment characters presented to the
parser. The state space of this state machine consists of four states code, slash,

1. Judging by 12 years of articles (1988–2000) published on the subject in Embedded Systems Programming mag-
azine.

2. The initial transition (the init() method) is intentionally separated from the state machine constructor to give
you better control over the initialization sequence.

Nested switch Statement 57
comment, and star. The input alphabet of the state machine consists of signals STAR
(*), SLASH (/), and CHAR (any character different from * and /).

Figure 3.1 C comment parser (CParser) state machine

Exercise 3.1 In the spirit of eXtreme Programming (XP), first prepare a test for the C
comment parser state machine. The test harness should (1) open a C
source file for reading, (2) instantiate a tested state machine object, (3)
take a default transition by invoking init() on this object, (4) read
characters from the file (until end-of-file) and translate them into signal
events (CHAR, STAR, SLASH), and (5) dispatch the event instances to the
state machine by invoking dispatch() on the state machine object.

3.2 Nested switch Statement
Perhaps the most popular technique of implementing state machines is the nested
switch statement, with a scalar state variable used as the discriminator in the first
level of the switch and an event signal used in the second level. Listing 3.1 shows a
typical implementation of the C comment parser FSM from Figure 3.1.

Listing 3.1 Comment parser state machine implemented using the nested switch

statement technique

SLASH

CHAR,
SLASH

STAR

CHAR

STAR

SLASH

STAR
CHAR,
SLASH

comment

code

slashstar

 1 enum Signal { // enumeration for CParser signals
 2 CHAR_SIG, STAR_SIG, SLASH_SIG
 3 };
 4 enum State { // enumeration for CParser states
 5 CODE, SLASH, COMMENT, STAR
 6 };
 7 class CParser1 {
 8 public:
 9 void init() { myCommentCtr = 0; tran(CODE); } //initial transition
 10 void dispatch(unsigned const sig);
 11 void tran(State target) { myState = target; }

58 Chapter 3: Standard State Machine Implementations
 12 long getCommentCtr() const { return myCommentCtr; }
 13 private:
 14 State myState; // the scalar state-variable
 15 long myCommentCtr; // comment character counter
 16 . . . // other CParser1 attributes
 17 };
 18
 19 void CParser1::dispatch(unsigned const sig) {
 20 switch (myState) {
 21 case CODE:
 22 switch (sig) {
 23 case SLASH_SIG:
 24 tran(SLASH); // transition to SLASH
 25 break;
 26 }
 27 break;
 28 case SLASH:
 29 switch (sig) {
 30 case STAR_SIG:
 31 myCommentCtr += 2; // SLASH-STAR count as comment
 32 tran(COMMENT); // transition to COMMENT
 33 break;
 34 case CHAR_SIG:
 35 case SLASH_SIG:
 36 tran(CODE); // go back to CODE
 37 break;
 38 }
 39 break;
 40 case COMMENT:
 41 switch (sig) {
 42 case STAR_SIG:
 43 tran(STAR); // transition to STAR
 44 break;
 45 case CHAR_SIG:
 46 case SLASH_SIG:
 47 ++myCommentCtr; // count the comment char
 48 break;
 49 }
 50 break;
 51 case STAR:
 52 switch (sig) {
 53 case STAR_SIG:
 54 ++myCommentCtr; // count STAR as comment
 55 break;
 56 case SLASH_SIG:
 57 myCommentCtr += 2; // count STAR-SLASH as comment
 58 tran(CODE); // transition to CODE
 59 break;

Nested switch Statement 59
Signals are typically represented as an enumeration (Listing 3.1, lines 1–3), as are
states (lines 4–6). The myState state variable is included in the Cparser1 class (line
14) because each instance needs to keep track of its own state. Execution of the state
machine begins with the initial transition via a call to init(). The heart of the state
machine is implemented in the dispatch() event handler method (lines 19–67),
which the client code invokes once per RTC step. State transitions are achieved by
reassigning the state variable (tran(), line 11).

Variations of this implementation include breaking up the monolithic event-han-
dler code by moving the second level of discrimination (based on the signal) into spe-
cialized state handler functions (see Exercise 3.3). In this case, the job of the main
event handler is reduced to dispatching events to appropriate state handlers. Also,
the state machine is often a Singleton (i.e., there is only one instance of it in the sys-
tem). In that case, the state machine can be coded as a module instead of a class, and
the single instance of the state variable can be hard-coded in the event handler.

The nested switch statement implementation has the following consequences.
• It is simple.
• It requires enumerating states and triggers.
• It has a small memory footprint, since only one scalar state variable is necessary

to represent a state machine.
• It does not promote code reuse since all elements of a state machine must be

coded specifically for the problem at hand.
• Event dispatching time is not constant but depends on the performance of the two

levels of switch statements, which degrade with increasing number of cases (typ-
ically as O(log n), where n is the number of cases).

• The implementation is not hierarchical, and manually coded entry/exit actions
and nested initial transitions are prone to error and difficult to maintain in view
of changes in the state machine topology. This is mainly because the code pertain-
ing to one state (e.g., an entry action) becomes distributed and repeated in many
places (on every transition leading to this state).

• The latter property is not a problem for code-synthesizing tools, which often use a
nested switch statement type of implementation.

 60 case CHAR_SIG:
 61 myCommentCtr += 2; // count STAR-? as comment
 62 tran(COMMENT); // go back to COMMENT
 63 break;
 64 }
 65 break;
 66 }
 67 }

60 Chapter 3: Standard State Machine Implementations
Exercise 3.2 Implement CParser1 in C. Hint: You can preserve the notion of the
CParser1 class by following techniques described in Section A.1 of
Appendix A. Please do not use the “C+” macros in this exercise.

Exercise 3.3 Implement a variation of the nested switch statement technique by
breaking the monolithic Cparser1::dispatch() event handler into
separate state handlers.

3.3 State Table
Another popular approach is to use state tables containing (typically sparse) arrays
of transitions for each state. Table 3.1 shows the state table for the C comment
parser state machine.

This table lists signals (triggers) along the top and states along the left edge. The
contents of the cells are transitions represented as {action, next-state} pairs. For
example, in the slash state, the STAR_SIG signal triggers a transition to the com-
ment state, associated with the execution of the a2() action. Empty cells correspond
to undefined signal–state combinations. The common policy of handling such trig-
gers is to silently ignore them without changing the state. You can choose a different
policy; for example, such events could trigger an error() action.

Listing 3.2 shows how a typical implementation using this technique might look.

Table 3.1 C comment parser state table

Signals →

CHAR_SIG STAR_SIG SLASH_SIG

←
 S

ta
te

s code
doNothing(),
slash

slash
doNothing(),
code

a2(),
comment

doNothing(),
code

comment
a1(),
comment

doNothing(),
star

a1(),
comment

star
a2(),
comment

a1(),
star

a2(),
code

State Table 61
Listing 3.2 State table implementation of the C comment parser FSM

 1 // generic "event processor" ...
 2 class StateTable {
 3 public:
 4 typedef void (StateTable::*Action)(); //pointer-to-member function
 5 struct Tran { // inner struct transition (aggregate)
 6 Action action;
 7 unsigned nextState;
 8 };
 9 StateTable(Tran const *table, unsigned nStates, unsigned nSignals)
 10 : myTable(table), myNsignals(nSignals), myNstates(nStates) {}
 11 virtual ~StateTable() {} // virtual xctor
 12 void dispatch(unsigned const sig) {
 13 register Tran const *t = myTable + myState*myNsignals + sig;
 14 (this->*(t->action))();
 15 myState = t->nextState;
 16 }
 17 void doNothing() {} // do-nothing default action
 18 protected:
 19 unsigned myState;
 20 private:
 21 Tran const *myTable;
 22 unsigned myNsignals;
 23 unsigned myNstates;
 24 };
 25
 26 // specific Comment Parser state machine ...
 27 enum Event { // enumeration for CParser events
 28 CHAR_SIG, STAR_SIG, SLASH_SIG, MAX_SIG
 29 };
 30 enum State { // enumeration for CParser states
 31 CODE, SLASH, COMMENT, STAR, MAX_STATE
 32 };
 33 class CParser2 : public StateTable { // CParser2 state machine
 34 public:
 35 CParser2() : StateTable(&myTable[0][0], MAX_STATE, MAX_SIG) {}
 36 void init() { myCommentCtr = 0; myState = CODE; } // initial tran.
 37 long getCommentCtr() const { return myCommentCtr; }
 38 private:
 39 void a1() { myCommentCtr += 1; } // action method
 40 void a2() { myCommentCtr += 2; } // action method
 41 private:
 42 static StateTable::Tran const myTable[MAX_STATE][MAX_SIG];
 43 long myCommentCtr; // comment character counter
 44 };
 45 // static initialization of a (ROMable) state-table...

62 Chapter 3: Standard State Machine Implementations
The state table implementation can be clearly divided into a generic and reusable
event processor part (class StateTable in lines 2–24) and an application-specific
part (lines 27–59). As shown in Figure 3.2, class StateTable does not physically
contain the array of transitions, but rather manages an array of an arbitrary number
of states (myNstates) and signals (myNsignals). Allocation and initialization of this
array is left to the clients. Transitions are represented as {action, next-state} pairs
(Listing 3.2, lines 5–8). The generic action is represented as a pointer-to-member
function of class StateTable (line 4). A pivotal aspect of this design is that the
pointer-to-member function (Action) of class StateTable can also point to a mem-
ber of a subclass of StateTable.3

Both events and states are represented as unsigned integers (clients typically enu-
merate them). The dispatch() method (Listing 3.2, lines 12–16) performs three
steps: (1) it identifies the transition to take as a state table lookup (line 13), (2) it exe-
cutes the action (line 14), and (3) it changes the state (line 15).

Figure 3.2 StateTable instance managing an array of transitions

 46 StateTable::Tran const CParser2::myTable[MAX_STATE][MAX_SIG] = {
 47 {{&StateTable::doNothing, CODE },
 48 {&StateTable::doNothing, CODE },
 49 {&StateTable::doNothing, SLASH}},
 50 {{&StateTable::doNothing, CODE },
 51 {static_cast<StateTable::Action>(&CParser2::a2), COMMENT },
 52 {&StateTable::doNothing, CODE }},
 53 {{static_cast<StateTable::Action>(&CParser2::a1), COMMENT },
 54 {&StateTable::doNothing,STAR },
 55 {static_cast<StateTable::Action>(&CParser2::a1), COMMENT }},
 56 {{static_cast<StateTable::Action>(&CParser2::a2), COMMENT },
 57 {static_cast<StateTable::Action>(&CParser2::a1), STAR },
 58 {static_cast<StateTable::Action>(&CParser2::a2), CODE }}
 59 };

3. Invoking methods of a subclass through a pointer-to-member function of the superclass can be potentially
unsafe when combined with multiple inheritance — that is, if the subclass inherits from more base classes than
StateTable (see the sidebar “C++ Pointer-to-Member Functions and Multiple Inheritance” on page 75).

:Tran

:Tran

:Tran

:Tran

:Tran

:Tran

:Tran

:Tran

:Tran

:Tran

:Tran

:Tran

dispatch()

myState
myTable
myNstates
myNsignals

:StateTable
array of transitons

action : Action
nextState

Tran

State Table 63
The application-specific part requires: (1) enumerating states and signals (Listing
3.2, lines 27–32), (2) subclassing StateTable (line 33), (3) defining the action func-
tions (lines 39–40), and (4) initializing the transition table (lines 46–59). Note that
CParser2 declares the table myTable as both static and const (line 41). The
static specifier means that all instances of the CParser2 class can share a single
instance of the table. The const specifier indicates that the table is immutable and
can be placed in ROM. Note the necessity of upcasting4 pointer-to-member func-
tions in the static initializer5 (lines 46–59) because methods a1() and a2() are mem-
bers of a subclass of StateTable (CParser2) rather than of StateTable directly.

There seem to be two main variations on state table implementation in C++. Con-
crete state machines can either be state tables (inheritance) or have a state table
(aggregation). The technique presented here falls into the inheritance category. How-
ever, the aggregation approach seems to be more popular (e.g., see [Douglass 01,
99]). Aggregation introduces the indirection layer of the context class — that is, the
concrete class on behalf of which the aggregated state table executes actions. Inherit-
ance eliminates this indirection, because the StateTable class plays the role of the
context (concrete state machine) class simultaneously. In other words, by virtue of
inheritance, every concrete state machine (like CParser2) also is a StateTable.

The state table, like the nested switch statement technique, is not hierarchical.
However, it is always possible to extend such nonhierarchical techniques to incorpo-
rate exit actions, entry actions, and nested initial transitions by hard-coding them
into transition action functions, which are then placed into the state table. Figure 3.3
shows an example of such a transition action function fromStateAAonE1() that
handles the whole hierarchical transition chain by explicitly calling the appropriate
exit actions, transition actions, and entry actions [Duby 01].

The state table implementation has the following consequences.
• It maps directly to the highly regular state table representation of a state machine.
• It requires the enumeration of triggers and states.
• It provides relatively good performance for event dispatching (O(const), not tak-

ing into account action execution).
• It promotes code reuse of the generic event processor, which is typically small.
• It requires a large state table, which is typically sparse and wasteful. However,

because the state table is constant, it often can be stored in ROM rather than
RAM.

4. If your C++ compiler does not support the new-style cast static_cast<Action>(…) (e.g., some older or
EC++ compilers don’t), then you should use the C-style cast (Action)(…).

5. The static (compile-time) initialization requires that the inner class StateTable::Tran is an aggregate —
that is, a class without private members or constructors [Stroustrup 91]. That’s why I’ve declared this class as
struct in line 5 of Listing 3.2.

64 Chapter 3: Standard State Machine Implementations
• It requires a large number of fine-granularity functions representing actions.
• It requires a complicated initialization. Manual maintenance of this initialization,

in view of changes in the state machine topology, is expensive and prone to error.
For instance, adding a new state requires adding and initializing a whole row in
the transition array, which often discourages programmers from evolving the state
machine. Instead, they tend to misuse extended state variables and guard condi-
tions (see Section 2.1.3 in Chapter 2).

• It is not hierarchical. Although the state table can be extended to implement state
nesting, entry/exit actions, and transition guards, these extensions require hard-
coding whole transition chains into transition action functions, which is prone to
error and inflexible.

Exercise 3.4 Implement the CParser2 state machine in C. Hint: Sections A.1 and A.2
of Appendix A describe simple techniques for implementing classes and
inheritance in C. Please use the “C+” macros CLASS() and SUBCLASS()
to declare classes StateTable and CParser2, respectively.

Exercise 3.5 Implement a variation of the state table technique in which you push the
responsibility of changing state into the action method (action methods
must call tran() explicitly). This variation allows you to replace the
Transition class with a pointer-to-member function. Note how this
cuts the size of the transition array in half (storing next-states becomes
unnecessary). However, you need to implement many more action meth-
ods, because now they are more specific. Modify the event processor
StateTable::dispatch() and the transition table initialization
accordingly.

Figure 3.3 Transition chain hard-coded in a transition action function

fromStateAAonE1() [Duby 01]

E1[guardE1]/fromStateAAonE1();

bool MyActiveObject::fromStateAAonE1(Event* ev)
{
 if (!guardE1(ev))
 return false; // transition unhandled
 exitStateAA(); // exit to common ancestor
 exitStateA();
 transitionFromAAtoBB(ev); // transition action
 enterStateB(ev);
 enterStateBB(ev); // enter target

 setState(STATE_BB); // explicitly change state
 return true; // transition handled
}

Parent

entry/
exit/

A

entry/
exit/

AA

entry/
exit/

B

entry/
exit/

BB

State Design Pattern 65
3.4 State Design Pattern
The object-oriented approach to implementing state machines is known as the
State design pattern [Gamma+ 95, Douglass 99]. An instance of this pattern
applied to the C comment parser state machine is shown in Figure 3.4.

Figure 3.4 State design pattern applied to the CParser state machine

The pattern is based on delegation and polymorphism. Concrete states are
represented as subclasses of an abstract State class, which defines a common inter-
face for handling events (each event corresponds to a virtual method). A Context
class delegates all events for processing to the current state object (designated by the
myState attribute). State transitions are explicit and are accomplished by reassign-
ing the myState pointer. Adding new events requires adding new methods to the
abstract state class, and adding new States requires subclassing this class.

Listing 3.3 shows one possible implementation of the design in Figure 3.4.

Listing 3.3 CParser3 implemented as a State design pattern

 onCHAR()
 onSTAR()
 onSLASH()
 init()
 # tran()

myState
myCommentCtr

CParser3

delegation

context

onCHAR()
onSTAR()
onSLASH()

CParserStateabstract
state

CodeState

SlashState

CommentState

StarState

virtual
methods

myState->onCHAR()

myState->onSTAR()

myState->onSLASH()

myState = target

1

1

State Pattern

concrete
states

 1 class CParser3; // Context class, forward declaration
 2 class CParserState { // abstract State
 3 public:
 4 virtual void onCHAR(CParser3 *context, char ch) {}
 5 virtual void onSTAR(CParser3 *context) {}
 6 virtual void onSLASH(CParser3 *context) {}
 7 };
 8 class CodeState : public CParserState { // concrete State "Code"
 9 public:
 10 virtual void onSLASH(CParser3 *context);
 11 };
 12 class SlashState : public CParserState { // concrete State "Slash"
 13 public:

66 Chapter 3: Standard State Machine Implementations
 14 virtual void onCHAR(CParser3 *context, char ch);
 15 virtual void onSTAR(CParser3 *context);
 16 virtual void onSLASH(CParser3 *context);
 17 };
 18 class CommentState : public CParserState { //concrete State "Comment"
 19 public:
 20 virtual void onCHAR(CParser3 *context, char ch);
 21 virtual void onSTAR(CParser3 *context);
 22 virtual void onSLASH(CParser3 *context);
 23 };
 24 class StarState : public CParserState { // concrete State "Star"
 25 public:
 26 virtual void onCHAR(CParser3 *context, char ch);
 27 virtual void onSTAR(CParser3 *context);
 28 virtual void onSLASH(CParser3 *context);
 29 };
 30 class CParser3 { // Context class
 31 friend class CodeState;
 32 friend class SlashState;
 33 friend class CommentState;
 34 friend class StarState;
 35 static CodeState myCodeState;
 36 static SlashState mySlashState;
 37 static CommentState myCommentState;
 38 static StarState myStarState;
 39 CParserState *myState;
 40 long myCommentCtr;
 41 public:
 42 CParser3(CParserState *initial) : myState(initial) {}
 43 void init() { myCommentCtr = 0; tran(&myCodeState); }
 44 long getCommentCtr() const { return myCommentCtr; }
 45 void onCHAR(char ch) { myState->onCHAR(this, ch); }
 46 void onSTAR() { myState->onSTAR(this); }
 47 void onSLASH() { myState->onSLASH(this); }
 48 protected:
 49 void tran(CParserState *target) { myState = target; }
 50 };
 51
 52 CodeState CParser3::myCodeState;
 53 SlashState CParser3::mySlashState;
 54 CommentState CParser3::myCommentState;
 55 StarState CParser3::myStarState;
 56
 57 void CodeState::onSLASH(CParser3 *context) {
 58 context->tran(&CParser3::mySlashState);
 59 }
 60 void SlashState::onCHAR(CParser3 *context, char ch) {

State Design Pattern 67
The CParserState class (Listing 3.3, lines 2–7) provides the interface for han-
dling events as well as the default (do-nothing) implementation for the actions asso-
ciated with these events. The four C parser states are defined as concrete subclasses
of the abstract CParserState class (lines 8–29). These subclasses override only spe-
cific event-handler methods; those corresponding to events that are handled in these
states. For example, state CodeState overrides only the onSLASH() method. Class
CParser3 plays the role of the Context class from the pattern (lines 30–50). It grants
friendship to all state classes (lines 31–34) and also declares all concrete states as
static members (lines 35–38). The context class duplicates the interface of the
abstract State class declaring a method for every signal event (lines 45–47). The
implementation of these methods is entirely prescribed by the pattern. The context
class simply delegates to the appropriate methods of the State class, which are
invoked polymorphically. The specific actions are implemented inside the event han-
dler methods of the concrete CParserState subclasses (lines 57–90).

 61 context->tran(&CParser3::myCodeState);
 62 }
 63 void SlashState::onSTAR(CParser3 *context) {
 64 context->myCommentCtr += 2;
 65 context->tran(&CParser3::myCommentState);
 66 }
 67 void SlashState::onSLASH(CParser3 *context) {
 68 context->tran(&CParser3::myCodeState);
 69 }
 70 void CommentState::onCHAR(CParser3 *context, char c) {
 71 context->myCommentCtr++;
 72 }
 73 void CommentState::onSTAR(CParser3 *context) {
 74 context->tran(&CParser3::myStarState);
 75 }
 76 void CommentState::onSLASH(CParser3 *context) {
 77 context->myCommentCtr++;
 78 }
 79 void StarState::onCHAR(CParser3 *context, char ch) {
 80 context->myCommentCtr += 2;
 81 context->tran(&CParser3::myCommentState);
 82 }
 83 void StarState::onSTAR(CParser3 *context) {
 84 context->myCommentCtr += 2;
 85 context->tran(&CParser3::myCommentState);
 86 }
 87 void StarState::onSLASH(CParser3 *context) {
 88 context->myCommentCtr += 2;
 89 context->tran(&CParser3::myCodeState);
 90 }

68 Chapter 3: Standard State Machine Implementations
The State design pattern has the following consequences.
• It partitions state-specific behavior and localizes it in separate classes.
• It makes state transitions efficient (reassigning one pointer).
• It provides very good performance for event dispatching through the late binding

mechanism (O(const), not taking into account action execution). This perfor-
mance is generally better than indexing into a state table plus invoking a method
via a function pointer, as used in the state table technique. However, such perfor-
mance is only possible because the selection of the appropriate event handler is
not taken into account. Indeed, clients typically will use a switch statement to
perform such selections.

• It allows you to customize the signature of each event handler. Event parameters
can be made explicit, and the typing system of the language can be used to verify
the appropriate type of a parameter at compile time (e.g., onCHAR() takes a
parameter of type char).

• It is memory efficient. If the concrete state objects don’t have attributes (only
methods), they can be shared (as in the CParser3 example).

• It does not require enumerating states.
• It does not require enumerating events.
• It compromises the encapsulation of the Context class, which typically requires

granting friendship to all state classes.
• It enforces indirect access to the Context’s parameters from the methods of the

concrete state subclasses (via the context pointer).
• Adding states requires adding concrete State subclasses.
• Handling new events requires adding event handlers to the State class interface.
• The event handlers are typically of fine granularity, as in the state table approach.
• It is not hierarchical.

Exercise 3.6 (Advanced) Implement the State design pattern version of the C com-
ment parser in C. Hint: Appendix A describes the realization of abstrac-
tion, inheritance, and polymorphism in C. Note: I consider this exercise
advanced because the design makes heavy use of polymorphism, which is
not necessary, even for the implementation of later hierarchical state
machines.

Optimal FSM Implementation 69
The standard State design pattern does not use the dispatch() method for per-
forming RTC steps. Instead, for every signal event, it provides a specific (type-safe)
event-handler method. However, the pattern can be modified (simplified) by com-
bining all event handlers of the state class into just one, generic state handler,
dispatch(), as shown in Figure 3.5. The abstract state class then becomes generic,
and its dispatch() method becomes the generic state handler. Demultiplexing
events (by event type), however, must be done inside the dispatch() methods of
the concrete state subclasses.

Figure 3.5 Simplified State design pattern applied to C comment parser state

machine

Exercise 3.7 Implement the C comment parser state machine using the Simplified
State design pattern from Figure 3.5.

3.5 Optimal FSM Implementation
In previous sections, I presented the three most popular techniques for imple-
menting FSMs. From my experience, though, none of these techniques in its pure
form is truly optimal. However, one particular combination of these techniques
repeatedly proved to be the most succinct and efficient implementation of the
classical flat FSM. This design, which I call the Optimal FSM design pattern, is
shown in Figure 3.6. Listing 3.4 shows an implementation of the C comment parser
state machine.

 init()
 dispatch()
 # tran()

myState
myCommentCtr

CParser3

delegation

context

dispatch()

Stategeneric
abstract state

CodeState

SlashState

CommentState

StarState

Simplified State
pattern

1 1
virtual method

myState->dispatch()

myState = target

concrete
states

70 Chapter 3: Standard State Machine Implementations
Figure 3.6 The optimal C comment parser FSM implementation

Listing 3.4 The optimal FSM pattern applied to the C comment parser

 1 class Fsm {
 2 public:
 3 typedef void (Fsm::*State)(unsigned const sig);
 4 Fsm(State initial) : myState(initial) {}
 5 virtual ~Fsm() {} // virtual xtor
 6 void init() { dispatch(0); }
 7 void dispatch(int sig) { (this->*myState)(sig); }
 8 protected:
 9 void tran(State target) { myState = target; }
 10 #define TRAN(target_) tran(static_cast<State>(target_))
 11 State myState;
 12 };
 13 enum Signal{ // enumeration for CParser signals
 14 CHAR_SIG, STAR_SIG, SLASH_SIG
 15 };
 16 class CParser4 : public Fsm {
 17 public:
 18 CParser4() : Fsm((State)&Cparser4::initial) {} // ctor
 19 long getCommentCtr() const { return myCommentCtr; }
 20 private:
 21 void initial(int); // initial pseudostate
 22 void code(int sig); // state-handler
 23 void slash(int sig); // state-handler
 24 void comment(int sig); // state-handler
 25 void star(int sig); // state-handler
 26 private:
 27 long myCommentCtr; // comment character counter
 28 };

code()
slash()
comment()
star()

CParser4

concrete FSM

 init()
 dispatch()
 # tran()

myState : State

FSM

generic FSM base class

state handler
methods

(this->*myState)(sig)

typedef
 void // return type
 (Fsm::* // class the function is the member of

State) // name of pointer-to-member
 (unsigned const sig); // argument list

myState = target
Optimal FSM

Pattern

Optimal FSM Implementation 71
 29
 30 void CParser4::initial(int) {
 31 myCommentCtr = 0;
 32 TRAN(&CParser4::code); // take the default transition
 33 }
 34 void CParser4::code(int sig) {
 35 switch (sig) {
 36 case SLASH_SIG:
 37 TRAN(&CParser4::slash); // transition to "slash"
 38 break;
 39 }
 40 }
 41 void CParser4::slash(int sig) {
 42 switch (sig) {
 43 case STAR_SIG:
 44 myCommentCtr += 2; // SLASH-STAR characters count as comment
 45 TRAN(&CParser4::comment); // transition to "comment"
 46 break;
 47 case CHAR_SIG:
 48 case SLASH_SIG:
 49 TRAN(&CParser4::code); // go back to "code"
 50 break;
 51 }
 52 }
 53 void CParser4::comment(int sig) {
 54 switch (sig) {
 55 case STAR_SIG:
 56 TRAN(&CParser4::star); // transition to "star"
 57 break;
 58 case CHAR_SIG:
 59 case SLASH_SIG:
 60 ++myCommentCtr; // count the comment character
 61 break;
 62 }
 63 }
 64 void CParser4::star(int sig) {
 65 switch (sig) {
 66 case SLASH_SIG:
 67 myCommentCtr += 2; // count STAR-SLASH as comment
 68 TRAN(&CParser4::code); // transition to "code"
 69 break;
 70 case CHAR_SIG:
 71 case STAR_SIG:
 72 myCommentCtr += 2; // count STAR-? as comment
 73 TRAN(&CParser4::comment); // go back to "comment"
 74 break;
 75 }
 76 }

72 Chapter 3: Standard State Machine Implementations
As you can see, this implementation combines elements from the Nested switch
statement, State Table, and Simplified State design pattern, but it also adds some
original ideas. The design hinges on class Fsm. This class plays a double role as the
Context class from the simplified State Pattern and the event processor from the
State Table pattern. The novelty of the Optimal FSM design comes from representing
states directly as state handler methods, which are members of the Fsm class (actu-
ally, its subclasses6 like CParser4). This means that state handlers have immediate
access to all attributes of the Context class (via the implicit this pointer in C++)
without breaking encapsulation. Like the Context class, Fsm keeps track of the cur-
rent state by means of the myState attribute of type Fsm::State, which is type-
def’d as a pointer-to-member function of the Fsm class (Listing 3.4, line 3).

The Optimal FSM design pattern has the following consequences.
• It is simple.
• It partitions state-specific behavior and localizes it in separate state handler meth-

ods. These methods have just about the right granularity — neither too fine (as
with action methods) nor monolithic (as with the consolidated event handler).

• It provides direct and efficient access to state machine attributes from state han-
dler methods and does not require compromising the encapsulation of the Con-
text class.

• It has a small memory footprint because only one state variable (the myState
pointer) is necessary to represent a state machine instance.

• It promotes code reuse of an extremely small (trivial) and generic event processor
implemented in the Fsm base class.

• It makes state transitions efficient (by reassigning the myState pointer).
• It provides good performance for event dispatching by eliminating one level of

switch from the Nested switch Statement technique and replacing it with the
efficient function pointer dereferencing technique. In typical implementations,
state handlers still need to rely on one level of a switch statement, with perfor-
mance dependent on the number of cases (typically O(log n), where n is the num-
ber of cases). However, the switch can be replaced by a look-up table in selected
(critical) state handlers (see Exercise 3.8)

• It is scalable and flexible. It is easy to add both states and events, as well as to
change state machine topology, even late in the development cycle.

6. Invoking methods of a subclass through a pointer-to-member function of the superclass can be potentially
unsafe when combined with multiple inheritance — that is, if the subclass inherits from more base classes than
Fsm (see the sidebar “C++ Pointer-to-Member Functions and Multiple Inheritance” on page 75).

State Machines and C++ Exception Handling 73
• It does not require enumerating states (only events must be enumerated).
• It is not hierarchical.

Exercise 3.8 Reimplement the optimal FSM C comment parser in C. Change the
implementation of one state handler — say, CParser4comment() — to
use an internal pointer-to-function look-up table, rather than the switch
statement, to dispatch events at a fixed time. Hint: Appendix A describes
the realization of abstraction and inheritance in C. Please use the tech-
niques directly in this exercise without the “C+” macros.

3.6 State Machines and C++ Exception Handling
Throwing and catching exceptions in C++ is fundamentally incompatible with
the run-to-completion (RTC) semantics of state machines. For example, assume
that the “Nested switch Statement” version of the C-comment parser throws an
exception at line 31 of Listing 3.1. As the exception propagates up the call stack (to
the caller of the CParser1::dispatch() method), it bypasses the state transition at
line 32 and destroys the integrity of the state machine. The extended state variable
(myCommentCtr) accounts for two new comment characters, whereas the state vari-
able (myState) still corresponds to the SLASH state. The problem is fundamental
and independent of the particular implementation technique. Any uncaught excep-
tions can play havoc with a state machine.

Therefore, you should be wary of the C++ exception handling in state
machines. If you cannot avoid the mechanism altogether (e.g., you rely on a
library that throws exceptions), you should be careful to catch all exceptions
before returning from an action method or a state handler. This rule, of course,
defeats the benefits of using exceptions in the first place.

However, state machines offer a better, language-independent way of han-
dling exceptions. A state machine associated with a reactive system can repre-
sent all conditions of the system, including fault conditions. Instead of throwing
an exception, an action should generate an exception event, which then triggers
a state-based exception handling. Section 8.2.2 in Chapter 8 describes the state-
based exception handling in more detail.

3.7 Role of Pointer-to-Member Functions
The efficiency of any state machine implementation technique7 depends on how fast
it can dispatch an event (dispatch()) and how fast it can take a state transition
(tran()). As it turns out, the optimal FSM implementation is unbeatable8 in both

74 Chapter 3: Standard State Machine Implementations
respects. The following disassembled output shows the invocation of the in-lined
Fsm::dispatch() method (x86 instruction set, 32-bit protected mode, Microsoft
VC++ compiler).

As you can see, the dereferencing of the pointer-to-member function and the
(this->*myState)() method invocation are both accomplished in just one
machine instruction (noted in bold). The two preceding instructions prepare argu-
ments for the call (stack the e pointer and fetch the this pointer) and are needed no
matter what technique you use.

The following is the disassembled output of a state transition (the in-lined tran()
method).

Again, state transition takes only one machine instruction because state transition
corresponds just to reassigning the this->myState pointer (the this pointer is, as
before, in the ecx register).

Exercise 3.9 In the literature, you often find implementations that apply pointers to
functions but still use a scalar state variable to resolve the state handler
through a look-up table (e.g., see [Gomez 00]). Try to implement this
technique as a variation of the optimal FSM. Look at the disassembled
output and compare it with the original implementation. What are other
disadvantages of this technique?

The point to remember from this discussion is that pointer-to-member functions
in C++ (or regular pointers to functions in C) are the fastest mechanism for imple-
menting state machines in C++ (or in C). State machines are the “killer applications”
for pointers-to-functions (in C) and pointers-to-member functions (in C++).

7. I am interested here only in the efficiency of the generic event processor, not the specific user actions.
8. The Optimal FSM implementation in C should be truly unbeatable; however, the performance of the C++

implementation depends on the C++ compiler.

0040118C push esi ; stack the event pointer e
0040118D mov ecx,407940h ; put 'this' pointer in ecx
00401192 call dword ptr ds:[407944h] ; (this->*myState)(e)

0040101A mov dword ptr [ecx],401030h ; QFSM_TRAN(slash)

Role of Pointer-to-Member Functions 75
C++ Pointer-to-Member Functions and Multiple Inheritance

In the book Inside the C++ Object Model, Lippman [Lippman 96, page 145] observes:

Use of a pointer-to-member function would be no more expensive than a
non-member pointer to function if it weren’t for virtual functions and
multiple inheritance (including, of course, virtual base classes), which
complicate both the type and invocation of a pointer-to-member. In
practice, for those classes without virtual functions or virtual multiple
base classes, the compiler can provide equivalent performance.

Indeed, the high performance of C++ state machine implementations based on
pointer-to-member functions can suffer slightly with virtual state handler functions,
but the implementation might break altogether in the presence of multiple inheritance
(MI).

The reason for the incompatibility with MI is that the C++ state machine imple-
mentations based on pointer-to-member functions (e.g., the State Table or the Optimal
FSM) often use a pointer-to-member function of a base class (e.g., Fsm) to point to a
member function of a subclass (e.g., CParser4). Such usage requires that you explic-
itly upcast pointer-to-member functions of a subclass to pointer-to-member functions
of the superclass. However, although upcasting is legal (when implemented with
static_cast<>), using the base class pointer to invoke methods declared in a derived
class is not strictly correct.

For example, the optimal FSM implementation declares state handlers as methods
of the CParser4 subclass (Listing 3.4), which requires assigning the state variable of
the base class Fsm::myState by upcasting the pointer-to-member functions of the
CParser4 subclass (see macro TRAN() in Listing 3.4, line 10). However, Fsm::dis-
patch() invokes the current state handler on behalf of the this pointer of the base
class: (this->*myState)(sig) (Listing 3.4, line 7). Such a pointer-to-member func-
tion dereferencing (method invocation) might be a problem: MI could change the
mechanism of method invocation in the subclass CParser4 from that in the base class
Fsm (i.e., if CParser4 were to derive from more base classes than Fsm).

To be strictly correct and compatible with MI, you must always bind a method of
class X to the object of the same class X. In other words, if a pointer-to-member func-
tion points to a method of class CParser4, you should not invoke the method through
a pointer of class Fsm, even though Cparser4 descends from Fsm. Applying this rule
to Fsm::dispatch() would require downcasting the this pointer to the derived
class CParser4 with the following construct.
 ((static_cast<CParser4 *>(this))->*myState)(sig)

Such a downcast would destroy the generality of the Fsm class.

76 Chapter 3: Standard State Machine Implementations
3.8 Implementing Guards, Junctions,

and Choice Points
As described in Chapter 2, guards, junctions, and choice points are elements of flow-
charts that the UML statecharts simply reuse. As such, these elements are not specific
to hierarchical state machines and can be used equally well in classical flat state
machines.

If you know how to code a flowchart, you already know how to implement
guards, junctions, and choice points. Flowcharts map easily to plain structured
code and are therefore straightforward to implement in those techniques that
give you explicit choice of the target of a state transition, such as the Nested switch
statement, the State design pattern, and the Optimal FSM pattern. Conditional exe-
cution is much harder to use in the State Table technique because the rigidly struc-
tured state table implicitly selects the targets of state transitions.

A guard specified in the UML expression [guard]/action … maps simply to
the if statement: if(guard()) { action(); …}. In the absence of orthogonal
regions, a junction pseudostate can have only one incoming transition segment
and many outgoing segments guarded by nonoverlapping guard expressions. This
construct maps simply to chained if–else statements: if (guard1()) {
action1(); } else if (guard2()) { action2(); } and so on. You can imple-
ment a dynamic choice point in an identical way, except that you can precede
the first if statement with an expression that dynamically affects subsequent
evaluations of the guards (equivalently, your guards might have side effects).

3.9 Implementing Entry and Exit Actions
The classical nonhierarchical state machines can also reap the benefits of a
guaranteed initialization of the state context through entry actions and a guar-
anteed cleanup in the exit actions. The lack of hierarchy vastly simplifies the
problem (but at the same time, it makes the feature much less powerful). One
way of implementing entry and exit actions is to dispatch reserved signals (e.g.,
ENTRY_SIG and EXIT_SIG) to the state machine. The tran() method could dis-
patch the EXIT_SIG signal to the current state (transition source) then dispatch

However, if MI is not important to you (which I believe is the case for the vast
majority of applications), then the simple techniques presented in this chapter should
be safe while offering unbeatable performance.

Dealing with State Hierarchy 77
the ENTRY_SIG signal to the target. For example, the implementation of
Fsm::tran() from the optimal FSM pattern can take the following form.

Please note that the ENTRY_SIG and EXIT_SIG signals are reserved; that is, cli-
ents must not use them as their application-specific signals.

Exercise 3.10 Suppose you want the C comment parser state machine to count the
number of comment blocks (/* … */). The obvious solution is to count
the number of transitions from slash to comment (Figure 3.1), but this
approach is not robust against possible extensions of the state machine.
A safer solution would be to use entry or exit actions. However, using
the entry action to count the number of entries into state comment does
not provide the correct number of comment blocks. Explain why. Pro-
pose a hierarchical C comment parser state machine, in which the count-
ing of entries into the comment state would indeed provide the number of
the complete comment blocks.

3.10 Dealing with State Hierarchy
The hierarchy of states remains difficult to address elegantly and efficiently.
Some published attacks on this problem include the following.
• A ROOMchart implementation [Selic+ 94]9 attempts to generalize the state table

approach by representing the state machine in a data structure, which is more effi-
cient than an array. A generic state machine interpreter traverses (interprets) the
data structure at run time when events are dispatched to the state machine. This
method has essentially the same consequences as a state table but trades complex-
ity for hierarchy and speed for memory savings.

• The UML state machine meta-model [OMG 01] is an elaborate design. The
model contains such classes as StateMachine, StateVertex, State, Compos-
iteState, SimpleState, PseudoState, Transition, Action, Guard, and
Event, to name just a few. The UML statechart meta-model is similar to the
ROOMchart approach, which is to realize a hierarchical state machine as a

void Fsm::tran(FsmState target) {
 (this->*myState)(EXIT_SIG); // dispatch EXIT signal to the target
 myState = target;
 (this->*myState)(ENTRY_SIG); //dispatch ENTRY signal to the source
}

9. The ROOMchart implementation published by Selic and colleagues [Selic+ 94] is different from code generated
by the ObjecTime toolset.

78 Chapter 3: Standard State Machine Implementations
collaboration of specialized objects. I am not familiar with any practical stat-
echart implementation that would literally apply the UML meta-model.10

• Ian Horrocks [Horrocks 99] essentially applies the State Table technique but rep-
resents hierarchy by using a separate state variable for each level of nesting. Hor-
rocks’ state-variables are much like quantum numbers used in the description of
quantum states (see the sidebar “Quantum States of the Hydrogen Atom” on
page 51 in Chapter 2). This approach seems simple but requires hard-coding the
action chains for every transition; therefore, the resulting code is difficult to mod-
ify when the topology of the state machine changes. In addition, Horrocks’
approach seems to neglect entry and exit actions for states.

• Carolyn Duby [Duby 01] advocates the State Table technique based on pointer-
to-member functions in C++. Her technique addresses state hierarchy by packag-
ing transition chains (exit actions, transition actions, entry actions, and even
guards) into transition action functions subsequently stored (as pointers to mem-
bers) in a state table. This approach puts the burden on the programmer to deter-
mine the least common ancestor (LCA) state for each transition and to explicitly
hard-code all necessary exit and entry actions. As in Horrocks’ approach, this
renders the code inflexible and, in practice, defeats the benefits of guaranteed ini-
tialization and cleanup through the entry/exit actions. Programmers can easily
forget to invoke the appropriate entry/exit actions, or they invoke them in the
wrong order. The interesting part of this technique is the consistent naming con-
vention for action methods, which makes navigating the code significantly easier.
Finally, Duby’s method incorporates not only an event processor, but also event
queueing and a single-task execution model for multiple state machines.
In quick review, the published approaches to manually coding HSMs seem to

fall into two broad categories: (1) heavyweight techniques that relieve the pro-
grammer from the responsibility of coding transition chains and (2) lightweight
techniques that require the programmer to explicitly hard-code transition
chains. Unfortunately, this creates the preconception that tight and efficient
manually generated HSM implementations are only possible through techniques
from the second category, which are inflexible and prone to error. In the next
chapter, I show you that it doesn’t necessarily have to be that way. You can have
a lightweight HSM implementation that takes care of transition chains. In other
words, you can have your cake and eat it too!

10. For example, a UML-compliant design automation tool, Rhapsody, from I-Logix (www.ilogix.com) seems
not to use the UML meta-model for code generation. Instead, the code synthesized by the tool resembles a hand-
coded double switch statement technique [Douglass 99].

Summary 79
3.11 Summary
The standard implementation techniques and their variations discussed in this
chapter can be freely mixed and matched to provide a continuum of possible
trade-offs. Indeed, most of the implementations of state machines that you can
find in the literature seem to be variations or combinations of the three funda-
mental techniques: the Nested switch Statement, the State Table, and the object-ori-
ented State design pattern. In this chapter, I provided concrete, executable code, and
for each fundamental technique, I discussed the consequences of its use, as well as
some of the most common variations.

One particular combination of techniques, the Optimal FSM pattern, deserves
special attention because it is elegant and offers an unbeatable combination of good
performance and a small memory footprint. As you will see in Chapter 4, its inter-
face can be compatible with the behavioral inheritance meta-pattern, so you could
use it as a drop-in replacement for the simpler reactive classes, which don’t need state
hierarchy but would benefit from somewhat better performance and a smaller mem-
ory footprint.

In all techniques, state machines tend to eliminate many conditional state-
ments from your code. By crisply defining the state of the system at any given
time, state machines require that you test only one variable (the state variable)
instead of many variables to determine the mode of operation (recall the Visual Basic
Calculator example from Chapter 1). In all but the most basic approach of the
Nested switch Statement, even this explicit test of the “state variable” disappears as
a conditional statement. This coding aspect is similar to the effect of polymorphism,
which eliminates many tests based on the type of the object and replaces them with
more efficient (and extensible) late binding.

In the last section, I skimmed through some published attempts to implement
state hierarchy. Only automatic code synthesis seems to address the problem
correctly. The published manual techniques rely on explicitly hard-coding tran-
sition chains, which renders the code inflexible and practically defeats the pur-
pose of using state hierarchy in the first place. In the next chapter, I present the
QP (Quantum Programming) approach.

80 Chapter 3: Standard State Machine Implementations

4

Chapter 4

Implementing Behavioral

Inheritance

Perfection is achieved, not when there is nothing more to add
but when there is nothing left to take away.
— Antoine de Saint Exupery

In this chapter, I describe a practical realization of behavioral inheritance1 in the
form of an HSM implementation. Behavioral inheritance is one of the cornerstone
concepts of QP, in the same way that abstraction, inheritance, and polymorphism
are cornerstone concepts of OOP. One view of abstraction, inheritance, and poly-
morphism is that they are meta-patterns that provide the foundation for OOP and all
other OO design patterns. In the same way, you can view behavioral inheritance as
another fundamental meta-pattern, in that its various structured uses become design
patterns (state patterns2) in their own right.

1. The concept of behavioral inheritance (defined in Chapter 2) is the relationship between the substate and the
superstate in an HSM.

2. You can find a few such state patterns in Chapter 5.
81

82 Chapter 4: Implementing Behavioral Inheritance
To be practical and truly useful, the concepts of state machine and state hierarchy
must map easily to mainstream programming languages like C or C++. One
excellent example of how to successfully realize fundamental meta-patterns in a
C-like language3 is C++ itself (viewed as an OO extension to C). The C++ object
model (e.g., see [Lippman 96]) is nothing more than a concrete implementation
of the three fundamental OO meta-patterns. In view of the OO analogy between
behavioral inheritance and class inheritance, a successful HSM implementation
should be able to imitate the following main elements attributed to the wide-
spread acceptance of the C++ object model.
1. It should be simple to use and maintain. Defining states should be as easy as

defining C++ classes.
2. It should allow for easy changes in the state machine topology (state nesting and

state transitions). No manual coding of transition chains should be required. The
necessary modifications should be confined to one place in the code (ideally, one
line), like changing superclass in C++.

3. It should provide good run-time efficiency and should have a small memory foot-
print. The cost of dispatching events to a state machine should be comparable to
the invocation of virtual functions in C++.

4. It should follow the “zero overhead” principle of C++ (what you don’t use
shouldn’t cost you anything). For instance, the virtual function mechanism of
C++ allows you to explicitly specify class methods for which you accept the over-
head of late binding (virtual functions). Other class methods (nonvirtual) will not
pay the price.

Although UML statecharts support state nesting and thus enable behavioral
inheritance, they also contain many more concepts of secondary importance. The full
specification of the UML state machine package [OMG 01] presents a concoction of
features at various levels of generality, usefulness, and implementation overhead that
tends to overwhelm and obscure the really fundamental and important aspects of
statecharts. More importantly, the big and heavyweight UML specification precludes
a small and efficient implementation.

Therefore, in order to meet the goals enumerated earlier, the HSM implementa-
tion does not attempt to address all features specified in the UML state machine
package; rather, it addresses only the following few essential elements:
• hierarchical states with full support for behavioral inheritance,
• guaranteed initialization and cleanup with state entry and exit actions, and
• support for specializing state models via class inheritance.

3. Some recent additions to the family of C-like languages include Java and C#.

Structure 83
As you can see, this minimal approach leaves out pretty much everything except
support for behavioral inheritance and extensibility. In particular, the behavioral
inheritance meta-pattern intentionally limits itself only to the passive event proces-
sor, which needs to be driven externally to process events. In particular, the meta-
pattern does not include the standard elements traditionally associated with state
machines, such as an event queue, an event dispatcher, an execution context (thread),
or timing services. There are at least two reasons for this separation of concerns.
First, unlike the generic event processor, the other elements necessary to execute state
machines depend heavily on the concrete operating system. Second, in many cases,
these elements are already available. For example, GUI systems such as Microsoft
Windows offer a complete event-driven environment for executing passive state
machines, so there is no need to duplicate this functionality.4

The goal of the behavioral inheritance meta-pattern is to provide a generic event-
processor that you can use with any event queuing and dispatching mechanism.5 The
strategy is to provide just enough (but not more!) truly fundamental elements to
allow for the efficient construction of all other (higher level) statechart features,
including those built into the UML specification.

Note: In Chapter 5, you will see how to realize event deferral, orthogonal regions,
and transitions to history as state patterns that build on top of the funda-
mental behavioral inheritance implementation presented here. Chapter 6
addresses the reuse of state models through the inheritance of entire state
machines.

4.1 Structure
Chapter 3 detailed one particular implementation of the classical flat state machine
(the Optimal FSM) that had exceptionally favorable properties. This approach can
be extended to support state hierarchy without sacrificing its good characteristics.

Figure 4.1 shows the overall structure of the behavioral inheritance meta-pattern.
On the left side of the diagram, the design is similar to the Optimal FSM design
(compare Figure 3.6 in Chapter 3). The abstract HSM base class QHsm (quantum
HSM) provides the familiar init() interface to initialize the state machine, the dis-
patch() method to dispatch events, and the (protected) tran() method to execute
state transitions. This base class is central to the design because all concrete state
machines derive from it.

4. The Quantum Calculator (Chapter 1) provides an example of integrating the event processor directly with the
Windows GUI.

5. Part II of this book describes the Quantum Framework, an infrastructure for executing state machines opti-
mized for embedded real-time systems.

84 Chapter 4: Implementing Behavioral Inheritance
As in the Optimal FSM design, the state QState (quantum state) is represented as
a pointer-to-member function of the QHsm class. Class QHsm keeps track of the active
state by means of the myState attribute. In addition, it uses another attribute
(mySource) to keep track of the current transition source during a state transition (in
HSMs, when a transition is inherited from a higher level superstate, the source of
this transition is different from the active state).

On the right side of Figure 4.1, you find facilities for representing events and
event parameters. The QEvent (quantum event) class represents a SignalEvent (see
Section 2.2.8 in Chapter 2), which can be used as-is (for events without parameters)
or can serve as a base for subclassing (for events with parameters). QEvent relates to
QHsm through the signature of the state handler method (see the note attached to
QState in Figure 4.1).

Figure 4.1 Structure of the behavioral inheritance meta-pattern

Listing 4.1 shows the complete declaration of the QHsm class, which provides the
familiar public methods: init() for triggering the initial transition (line 9), and
dispatch(), for dispatching events (line 10). You also can find the protected
tran() method for executing transitions (line 21), but this method is not intended to
be invoked directly by the clients. Instead, QHsm provides three macros to execute
state transitions: Q_INIT() is exclusively for initial transitions, Q_TRAN() is for reg-
ular state transitions, and Q_TRAN_DYN() is for state transitions in which the target
can change at run time. The following sections explain all these elements in detail.

As you also will see later in this chapter, an HSM implementation can do without
polymorphism at the basic level. For simplicity, the QHsm class intentionally avoids

+ init()
+ dispatch()
tran()
top()

- myState : QState
- mySource : QState

QHsm

Calc

Behavioral Inheritance
meta-pattern sig : QSignal

. . .

QEvent

concrete
HSMs

timekeeping()
setting()

Watch

abstract HSM base class

generic
event base
class

lParam
wParam

Win32Evt

keyID

CalcEvt

typedef // signature of state-handler method
 QPseudoState // return type
 (QHsm::* // class the function is the member of
 QState) // name of pointer-to-member
 (QEvent const *); // argument list

return 0

event
parameters

state-handler
methods

events with
parameters

Structure 85
virtual functions, except of the virtual destructor (Listing 4.1, line 8). The vir-
tual destructor, however, makes the QHsm class polymorphism-ready and is impor-
tant to properly synthesize pointer-to-member functions in some C++
implementations. Chapter 6 discusses these issues, as well as the legitimate use of
polymorphism in conjunction with state machines. In Chapter 6, you also will see
how to design extensible object models and how to reuse them through inheritance.

Listing 4.1 QHsm class declaration

 1 class QHsm { // Quantum Hierarchical State Machine
 2 public:
 3 typedef void (QHsm::*QPseudoState)(QEvent const *);
 4 typedef QPseudoState (QHsm::*QState)(QEvent const*);
 5
 6 QHsm(QPseudoState initial); // Ctor
 7
 8 virtual ~QHsm(); // virtual Xtor
 9 void init(QEvent const *e = 0); // execute initial transition
 10 void dispatch(QEvent const *e); // dispatch event
 11 int isIn(QState state) const; // "is-in-state" query
 12 static char const *getVersion();
 13
 14 protected:
 15 struct Tran { // protected inner class Tran
 16 QState myChain[7];
 17 unsigned short myActions; // action mask (2-bits for action)
 18 };
 19 QPseudoState top(QEvent const*) { return 0; } // the "top" state
 20 QState getState() const { return myState; }
 21 void tran(QState target); // dynamic state transition
 22 void tranStat(Tran *t, QState target); // static state transition
 23 void init_(QState target) { myState = target; }
 24 #define Q_INIT(target_) init_(Q_STATIC_CAST(QState, target_))
 25 #define Q_TRAN(target_) if (1) { \
 26 static Tran t_; \
 27 tranStat(&t_, Q_STATIC_CAST(QState, target_));\
 28 } else ((void)0)
 29 #define Q_TRAN_DYN(target_) tran(Q_STATIC_CAST(QState, target_))
 30
 31 private:
 32 void tranSetup(Tran *t, QState target);
 33
 34 private:
 35 QState myState; // the active state
 36 QState mySource; // source state during a transition
 37 };
 38 typedef QHsm::QPseudoState QSTATE; // state-handler return type

86 Chapter 4: Implementing Behavioral Inheritance
If you are familiar with the standard Chain of Responsibility design pattern
[Gamma+ 95], you might recognize that it addresses similar design problems to
behavioral inheritance. In fact, every state hierarchy is a specific chain of responsibil-
ity, in which a request (event instance) is sent down a chain of state hierarchy in
which more than one state has a chance to handle it. However, the two patterns are
also significantly different. The chain of responsibility addresses the forwarding of
requests among different objects, whereas behavioral inheritance addresses event
handling within a single object.

4.1.1 Events

As you probably noticed from the standard state machine implementations (Chapter
3), most of the techniques (in particular, the optimal FSM approach) require a uni-
form representation of events, which leaves essentially only two choices for passing
events to the handler methods: (1) passing the signal and generic event parameters
separately or (2) combining the two into an event object. In Chapter 3, I demon-
strated how to use the first option. Passing signals and parameters separately was
fine for events with only a small and fixed set of parameters (e.g., the raw Windows
API (Win32) uses the fixed-parameter technique to pass events to WinMain()), but in
general, the second option offers more flexibility. Combining the signal with the
parameters has an additional advantage, in that event instances (as opposed to pairs
of signals and event parameters) are available in virtually every event-driven environ-
ment and can be passed around more easily and stored in event queues.

Event instances are used primarily as “bags” for packaging and passing around
signals and event parameters. To generate events efficiently, it’s often convenient to
use statically preallocated event objects initialized with an initializer list. To allow
such initialization, a class must be an aggregate; that is, it must not have private or
protected members, constructors, base classes, and virtual functions [Stroustrup 91].
For that reason, the quantum event class QEvent (Listing 4.2) is declared as struct
without any constructors (an obvious constructor would take one argument to ini-
tialize the sig attribute). In C++, struct is exactly equivalent to class, except in
struct, the default protection level is public rather than private [Lipmann 96].

Listing 4.2 QSignal data type and QEvent class

typedef unsigned short QSignal; // Quantum Signal

struct QEvent { // Quantum Event
 QSignal sig;
 . . .
};

Structure 87
New events with arbitrary parameters derive from the QEvent base class. The
main responsibilities of the QEvent class are to bundle event parameters (by sub-
classing), to store the signal, and to provide a means of identifying the derived
classes. The QEvent class combines the last two responsibilities and assigns them
both to the sig attribute of scalar type QSignal.

When you derive from QEvent, obviously the subclasses are no longer aggregates.
However, you should still keep your event classes simple and lightweight. Keep
declaring your subclasses as structs, as a reminder that they are lightweight. In par-
ticular, you should avoid introducing constructors or virtual functions6 in the
derived event classes. As you will see in Part II, events generally do not go thorough
conventional instantiation and cleanup (unless you use overloaded new and delete
operators), so the constructors aren’t invoked and the virtual pointers aren’t set up.

Listing 4.2 declares QSignal as an unsigned short (typically a 16-bit integer).
For most applications, the dynamic range of 216 (65,536) should be sufficient for
representing all necessary signals (even the dynamic range of a byte, 28 [256], typi-
cally will do). Naturally, you can redefine QSignal to use as many bits as you need.

The base class QEvent dictates that all event objects inherit the sig attribute,
which provides the uniform mechanism for event processing because state handlers
need to accept only the generic QEvent* pointer. On the flip side, this approach com-
promises type safety because a handler method doesn’t know the concrete type of the
event object passed as a generic pointer. All the handler knows is how to access the
sig attribute to infer the concrete class of the event so that it can explicitly downcast
the generic event to a concrete event. Therefore, it is crucial for the sig attribute to
provide not only the signal but a unique mapping to the concrete event class. In other
words, many signals can be mapped to the same QEvent (sub)class, but each QEvent
subclass should have only one corresponding signal (otherwise, to which class would
you downcast in your state handler method?).

The QEvent class contains other attributes (intentionally omitted in Listing 4.2),
which I discuss in Chapter 9. I had to include them in the level of QEvent, rather than
add them later via inheritance, to keep the benefits of an aggregate. For now, suffice it
to say that these data members are used to automatically recycle event objects in Part
II of this book (a specific garbage collection of the Quantum Framework).

Exercise 4.1 Redefine the signature of the state handler method in the optimal FSM
implementation (Listing 3.4 in Chapter 3) to accept a generic immutable
event pointer (QEvent const*) instead of an integer signal. Name this
new class QFsm (quantum FSM). Subsequently use this quantum FSM
design to implement the C comment parser from Chapter 3.

6. This technique precludes using run time type identification (RTTI) for identifying event classes.

88 Chapter 4: Implementing Behavioral Inheritance
4.1.2 States

When you look at the structure of the behavioral inheritance meta-pattern shown in
Figure 4.1, you might be surprised to see no State class. After all, State is the central
abstraction for a state machine, and a State class falls out automatically from every
OO analysis of the problem. Indeed, an earlier HSM implementation [Samek+ 00]
was built around such a central State class. Using state objects seemed unavoidable
because, in contrast to a basic flat state, a hierarchical state includes more than
behavior. At a minimum, it must provide a data link to its superstate to represent
state nesting, which is analogous to data links that chain together request-handler
objects in the Chain of Responsibility design pattern. However, representing states as
objects has severe drawbacks: Objects require storage and initialization, which are
big inconveniences for the clients.

However, a state handler method can provide behavior and the badly needed
structural link by returning the superstate. As simple as it seems, this was a break-
through idea for me7 because it allowed a straightforward extension of the optimal
FSM design, preserving most of its favorable properties.

From the optimal FSM implementation in Chapter 3, you might recall that the
state was represented as a pointer to the state handler method — that is, a pointer-to-
member function of the QFsm class. Exercise 4.1 arrives at the following signature.

In the case of a hierarchical state, a state handler must additionally return the
superstate, which leads to a recursive definition of the hierarchical state handler sig-
nature. Constructing such a signature is not possible in C++ (see [Sutter 01]), so it’s
approximated by the following definition of the quantum state, QState.

The definition of the QState type nails down the signature of a hierarchical state
handler. Listing 4.3 shows an example of a state handler method that handles events
according to their signals (e->sig attribute) and returns the superstate if it cannot
process a given event. This particular state handler method comes from the Quantum
Calculator example discussed in Chapter 1.

7. Perhaps the main difficulty of arriving at this obvious solution was breaking with traditional OO analysis princi-
ples, which prescribe mapping abstractions to classes.

typedef void // return type
 (QFsm::* // class the function is member of
 QFsmState) // name of pointer-to-member
 (QEvent const *); // argument list

typedef void (QHsm::*QPseudoState)(QEvent const *);
typedef QPseudoState // return type
 (QHsm::* // class the function is member of
 QState) // name of pointer-to-member
 (QEvent const *); // argument list

Structure 89
Listing 4.3 Example of a hierarchical state handler (refer to the statechart shown

in Figure 1.3 in Chapter 1)

The emphasized sections of Listing 4.3 demonstrate the main points. Line 1
shows the signature of the state handler method. In line 2, you see how the handler
uses the sig signal attribute of the generic event pointer as the discriminator of a sin-
gle-level switch statement (this is the same switch statement as in the optimal FSM
implementation from Chapter 3). Line 12 demonstrates downcasting of the generic
event pointer e to a derived event to get access to a specific parameter (here,
CalcEvt::keyId). Finally, the handler has multiple exit points. In lines 5, 9, and 14,
it returns 0, which indicates that the event has been processed. The default exit point
(line 16), however, is reached only if the state handler cannot process the event, so it
returns the superstate (the calc state handler in this case). Please note the casting on
QSTATE, which is necessary because the calc state (as for all other states in this state
machine) is defined at the level of the Calc subclass, rather than directly in the QHsm
class. This technique has the potential to be unsafe when combined with multiple
inheritance (see the sidebar “C++ Pointer-to-Member Functions and Multiple Inher-
itance” in Chapter 3).

4.1.3 Entry/Exit Actions and Initial Transitions

In Chapter 2, you saw that UML statecharts support elements of Moore automata
such as entry actions, exit actions, and initial transitions. These elements are sole
characteristics of the state in which they are defined and do not depend, in particular,
on the transition path through which the state has been reached. As described in

 1 QSTATE Calc::operand1(QEvent const *e) { // state-handler signature
 2 switch (e->sig) {
 3 case Q_ENTRY_SIG:
 4 dispState("operand1");
 5 return 0; // event handled
 6 case IDC_CE:
 7 clear();
 8 Q_TRAN(&Calc::begin); // transition to "begin"
 9 return 0; // event handled
 10 case IDC_OPER:
 11 sscanf(myDisplay, "%lf", &myOperand1);
 12 myOperator = (static_cast<CalcEvt *>(e))->keyId; // downcast
 13 Q_TRAN(&Calc::opEntered); // transition to "opEntered"
 14 return 0; // event handled
 15 }
 16 return (QSTATE)&Calc::calc; //event not handled, return superstate
 17 }

90 Chapter 4: Implementing Behavioral Inheritance
Chapter 3, state handlers can (optionally) specify a state-specific behavior by
responding to the following reserved signals.

A state handler can handle these signals by defining the appropriate cases in the
usual switch statement. A state handler is free to execute any actions in response to
those signals, but it should not take any state transitions in entry/exit actions. Con-
versely, it should always invoke the Q_INIT() macro to designate the initial direct
substate in response to the Q_INIT_SIG signal.

Note: The UML specification allows the initial transition to target both direct and
transitive substates. For simplicity and better efficiency, the HSM imple-
mentation restricts initial transitions to targeting the direct substates only.

The following code is an example of a state handler that uses these facilities.

The reserved signals take up the lowest signal IDs, which are thus not available
for clients. For convenience, the public HSM interface contains the signal
Q_USER_SIG, which indicates the first signal free for client use. A simple way to
guarantee unique signals is to define them in a single enumeration. In this case,
Q_USER_SIG can be used as follows.

enum {
 Q_ENTRY_SIG = 1,
 Q_EXIT_SIG,
 Q_INIT_SIG,
 Q_USER_SIG
};

QSTATE Calc::calc(QEvent const *e) {
 switch (e->sig) {
 case Q_ENTRY_SIG:
 dispState("ready"); // entry action
 return 0; // entry action executed
 case Q_INIT_SIG:
 clear();
 Q_INIT(&Calc::ready); // initial transition
 return 0; // initial transition taken
 . . .
 }
 return (QSTATE)&Calc::top; // signal unhandled, return superstate
}

Structure 91
If you look carefully, you might notice that a reserved signal starts with a 1 rather
than a 0. This is because signal 0 also is reserved but is used only in the internal
implementation; therefore, it is not included in the public interface presented here.
The additional reserved signal, 0 (the Empty signal Q_EMPTY_SIG), should never be
handled explicitly by a state handler. Its only purpose is to force a state handler to
return the superstate.

Note: The reserved signals Q_ENTRY_SIG, Q_EXIT_SIG, and Q_INIT_SIG should
cause no side effects in state handler methods that do not have entry
actions, exit actions, or initial transitions. The Q_EMPTY_SIG (0) signal
always should cause a state handler to return the superstate without any
side effects.

4.1.4 State Transitions

The example of a state handler in Listing 4.3 shows that state handler methods
implement state transitions by means of the Q_TRAN() macro. More specifically, the
state handler corresponding to the source of the transition invokes the macro and
specifies the target as the argument.

This simple implementation cannot be compliant with the UML specification. As
described in Section 2.2.5 of Chapter 2, the UML specification prescribes the follow-
ing transition execution sequence: (1) exit actions from the source state configura-
tion, (2) actions associated with the transition, and (3) entry actions to the target
state configuration. Instead, the Q_TRAN() macro executes only the exit actions from
the source state configuration immediately followed by the entry actions to the target
state configuration. This sequence does not include actions associated with the tran-
sition, which can either precede the change of state (if you define them before
Q_TRAN()) or follow the change of state (if you define them after Q_TRAN()), mean-
ing the Q_TRAN() macro performs an atomic change of state, which cannot be dis-
rupted by any other actions.

An earlier implementation of an HSM [Samek+ 00] tried to follow the UML stan-
dard strictly and ended up with a rather awkward and suboptimal design in this
respect. The implementation was forced to interrupt a transition sequence after the

enum MySignals {
 MY_KEYPRESS_SIG = Q_USER_SIG,
 MY_MOUSEMOVE_SIG,
 MY_MOUSECLICK_SIG,
 . . .
};

92 Chapter 4: Implementing Behavioral Inheritance
exit from the source to give the clients a chance to squeeze in the transition-related
actions before entering the target. This design not only put the burden on the clients
to arrange the code appropriately, but obscured the implementation and prohibited
valuable optimizations of the fragmented transition execution chain.

Yet, in my own experience with HSMs, as well as in reference statechart designs, I
have never encountered a state model in which this particular alteration in the
sequence of actions would really matter. If anything, then, the altered sequence
implemented in the Q_TRAN() macro seems more intuitive, because even the UML
specification advises: “[You should] think of a transition as belonging to the source
state” [OMG 01, section 3.80.3]. Therefore, it seems most natural to execute the
transition actions in the context of the source state (i.e., before changing the state
through invocation of the Q_TRAN() macro). The notion that transition actions are
executed in the source state is additionally reinforced in the QHsm implementation,
because you define the transition actions in the source state handler. At the same
time, the UML specification arbitrarily prescribes leaving the source state up to the
LCA and then executing the transition actions. For me, choosing the context of the
LCA for execution of the transition actions is not intuitive. To be more specific, I
believe that the transition execution sequence specified in the UML is flawed and the
proposed sequence here is correct.

More importantly, however, the altered sequence does not compromise any fun-
damental benefits of HSMs, like programming-by-difference or guaranteed initializa-
tion and cleanup via entry and exit actions. Please note that the altered transition
sequence still preserves the essential order of exiting a nested source state (from the
most deeply nested state up the hierarchy to the LCA) and entering a target state
(from the LCA state down the hierarchy to the target).

4.1.5 The top State and the initial Pseudostate

Every HSM has the (typically implicit) top state, which contains all the other ele-
ments of the entire state machine (see Section 2.2.1 in Chapter 2). The QHsm class
guarantees that the top state is available in every state machine by providing the pro-
tected QHsm::top() state handler inherited subsequently by all QHsm subclasses
(Listing 4.1, line 19). By definition, the top state has no superstate, so the corre-
sponding state handler always returns 0. The QHsm class implementation defines the
top state entirely, and clients cannot override it (the QHsm::top() state handler is
intentionally not virtual).

The only purpose, and legitimate use, of the top state is to provide the ultimate
root of a state hierarchy, so that the highest level state handlers can return top as
their superstate. In particular, you should not target the top state in a state transition

Structure 93
(you cannot use the top state as a transition source either, because you cannot over-
ride the QHsm::top() state handler).

Figure 4.2 The top state and the initial pseudostate

The only customizable aspect of the top state is the initial transition (see Figure
4.2). Clients must define the initial pseudostate handler for every state machine. The
QHsm constructor enforces this condition by requiring a pointer to the initial pseu-
dostate handler as an argument (Listing 4.1, line 7). The initial pseudostate handler
defines only the initial transition, which must designate the default state of the state
machine nested inside the top state (via the Q_INIT() macro). The initial transition
can also specify arbitrary actions (typically initialization). The following code is an
example of an initial pseudostate handler (from the Quantum Calculator example in
Chapter 1).

The QHsm constructor intentionally does not execute the initial transition
defined in the initial pseudostate because the clients don’t have precise control
over the timing when the C++ run time executes constructors.8 Instead, a state
machine comes out of the instantiation process in the initial pseudostate. Later,
the client code must trigger the initial transition explicitly by invoking init()
(described in the next section). This process separates instantiation of the state
machine from initialization, giving the clients full control over the sequence of
initializations in the system, which can be important because state machines are
often Singletons9 that are statically allocated and instantiated in an arbitrary order
by the C++ run time prior to invoking main(). During the static instantiation, some
vital objects can be missing, hardware might not be properly initialized yet, and mul-
titasking is typically not yet enabled.

top

 concrete HSM

Submachine

top state

nested
submachine

initial
pseudostate

initial transition
(triggered by
QHsm::init())

void Calc::initial(QEvent const *) {
 clear(); // perform initializations...
 Q_INIT(&Calc::calc); // designate the default state
}

8. For example, state machine objects are often static, in which case the C++ run time instantiates them before
invoking main().

9. For example, the Quantum Calculator from Chapter 1 is a Singleton (see the Singleton design pattern in
Gamma and colleagues [Gamma+ 95]).

94 Chapter 4: Implementing Behavioral Inheritance
Please note that the topmost initial transition can fire only once (actually, exactly
once), because after you leave the top state, you cannot transition back. In other
words, your state machine cannot reuse the initial pseudostate in its life cycle.

Exercise 4.2 Propose an alternative design for the state machine initialization that
would implement an initial transition as a polymorphic initial()
method (a virtual function in C++), rather than as an initial pseu-
dostate. This method should be abstract (purely virtual) in the QHsm class
so that clients would have to override it.

Exercise 4.3 Extend the previous design by adding another polymorphic method,
onUnhandled(), which would be invoked from the top state handler,
instead of silently discarding a user-defined signal. The default imple-
mentation should do nothing, but clients could override it to customize
the treatment of such signals (e.g., treat them as errors).

4.2 An Annotated Example
Chapter 1 described one example of instantiating the behavioral inheritance meta-
pattern. The Quantum Calculator application implemented a nontrivial statechart
and integrated it with the Microsoft Windows GUI environment.

In this section, I walk you through the implementation of another nontrivial stat-
echart, shown in Figure 4.3. This HSM contains six states — s0, s1, s11, s2, s21,
and s211 — and its alphabet consists of eight signals, a through h. I have carefully
designed this example to contain almost all the complex features of HSMs,10 while
still being simple enough to present the complete code.

10. This statechart also provides an exhaustive test case for the underlying internal implementation of the event pro-
cessor described in Section 4.4.

An Annotated Example 95
Figure 4.3 Statechart used in the example

For simplicity, this statechart uses only a text-based interface. Most actions con-
sist only of printf() statements that report the status of the state machine. You can
regard these statements as a primitive instrumentation of the code.

In this section, I present the C++ implementation; however, I will present the C
implementation of this statechart later in this chapter (Section 4.5.5). The accompa-
nying CD-ROM contains complete code for both the C and C++ versions.

4.2.1 Enumerating Signals and Subclassing QHsm
The first step of the implementation consists of enumerating all signals (Listing 4.4,
lines 3–6). Note that the user signals cannot start from zero; rather, they have to be
offset by Q_USER_SIG to avoid overlapping the reserved system signals
(Q_ENTRY_SIG, Q_EXIT_SIG, and Q_INIT_SIG).

Next, you derive the concrete HSM by inheriting from the QHsm class (Listing 4.4,
line 8). In the derived class, you declare state handler methods with the predefined
signature for all states in your statechart. The statechart from Figure 4.3 has six
states, so you end up with six state handler methods (lines 13–18). Additionally, you
also must declare the initial pseudostate handler (line 12) with the predefined signa-
ture. Typically, you define a default constructor (without arguments) using the initial
pseudostate handler as the argument to construct the superclass QHsm (line 10).
Finally, you add arbitrary data members to the state machine (line 20). State handler
methods use these attributes as extended state variables.

entry/
exit/

s0

entry/
exit/

s1

entry/
exit/
h[foo]/foo=0;

s11

entry/
exit/

s2

entry/
exit/

s21

entry/
exit/

s211

a
b

c

c

d
f

f

g

b

d
e

g

foo=1;
h[!foo]/

96 Chapter 4: Implementing Behavioral Inheritance
Listing 4.4 Enumerating signals and subclassing QHsm; the unusual indentation

used to declare state handler methods indicates state nesting

4.2.2 Defining State Handler Methods

All state handlers in this example are verbose, in that they log every signal processed
(including entry and exit actions and the initial transition). Listing 4.5 shows the ini-
tial pseudostate handler as well as all six state handlers of QHsmTst class.

Listing 4.5 Definition of the state handler methods of the QHsmTst class

 1 #include "qf_win32.h"
 2
 3 enum QHsmTstSignals {
 4 A_SIG = Q_USER_SIG, // user signals start with Q_USER_SIG
 5 B_SIG, C_SIG, D_SIG, E_SIG, F_SIG, G_SIG, H_SIG
 6 };
 7
 8 class QHsmTst : public QHsm { // QHsmTst derives from QHsm
 9 public:
 10 QHsmTst() : QHsm((QPseudoState)initial) {} // default Ctor
 11 private:
 12 void initial(QEvent const *e); // initial pseudostate
 13 QSTATE s0(QEvent const *e); // state-handler
 14 QSTATE s1(QEvent const *e); // state-handler
 15 QSTATE s11(QEvent const *e); // state-handler
 16 QSTATE s2(QEvent const *e); // state-handler
 17 QSTATE s21(QEvent const *e); // state-handler
 18 QSTATE s211(QEvent const *e); // state-handler
 19 private: // extended state variables...
 20 int myFoo;
 21 };

 1 void QHsmTst::initial(QEvent const *) {
 2 printf("top-INIT;");
 3 myFoo = 0; // initial extended state variable
 4 Q_INIT(&QHsmTst::s0); // initial transition
 5 }
 6
 7 QSTATE QHsmTst::s0(QEvent const *e) {
 8 switch (e->sig) {
 9 case Q_ENTRY_SIG: printf("s0-ENTRY;"); return 0;
 10 case Q_EXIT_SIG: printf("s0-EXIT;"); return 0;
 11 case Q_INIT_SIG: printf("s0-INIT;"); Q_INIT(&QHsmTst::s1);
 return 0;
 12 case E_SIG: printf("s0-E;"); Q_TRAN(&QHsmTst::s211); return 0;
 13 }

An Annotated Example 97
 14 return (QSTATE)&QHsmTst::top;
 15 }
 16
 17 QSTATE QHsmTst::s1(QEvent const *e) {
 18 switch (e->sig) {
 19 case Q_ENTRY_SIG: printf("s1-ENTRY;"); return 0;
 20 case Q_EXIT_SIG: printf("s1-EXIT;"); return 0;
 21 case Q_INIT_SIG: printf("s1-INIT;"); Q_INIT(&QHsmTst::s11);
 return 0;
 22 case A_SIG: printf("s1-A;"); Q_TRAN(&QHsmTst::s1); return 0;
 23 case B_SIG: printf("s1-B;"); Q_TRAN(&QHsmTst::s11); return 0;
 24 case C_SIG: printf("s1-C;"); Q_TRAN(&QHsmTst::s2); return 0;
 25 case D_SIG: printf("s1-D;"); Q_TRAN(&QHsmTst::s0); return 0;
 26 case F_SIG: printf("s1-F;"); Q_TRAN(&QHsmTst::s211); return 0;
 27 }
 28 return (QSTATE)&QHsmTst::s0;
 29 }
 30
 31 QSTATE QHsmTst::s11(QEvent const *e) {
 32 switch (e->sig) {
 33 case Q_ENTRY_SIG: printf("s11-ENTRY;"); return 0;
 34 case Q_EXIT_SIG: printf("s11-EXIT;"); return 0;
 35 case G_SIG: printf("s11-G;"); Q_TRAN(&QHsmTst::s211); return 0;
 36 case H_SIG: // internal transition with a guard
 37 if (myFoo) { // test the guard condition
 38 printf("s11-H;");
 39 myFoo = 0;
 40 return 0;
 41 }
 42 break;
 43 }
 44 return (QSTATE)&QHsmTst::s1;
 45 }
 46
 47 QSTATE QHsmTst::s2(QEvent const *e) {
 48 switch (e->sig) {
 49 case Q_ENTRY_SIG: printf("s2-ENTRY;"); return 0;
 50 case Q_EXIT_SIG: printf("s2-EXIT;"); return 0;
 51 case Q_INIT_SIG: printf("s2-INIT;"); Q_INIT(&QHsmTst::s21);
 return 0;
 52 case C_SIG: printf("s2-C;"); Q_TRAN(&QHsmTst::s1); return 0;
 53 case F_SIG: printf("s2-F;"); Q_TRAN(&QHsmTst::s11); return 0;
 54 }
 55 return (QSTATE)&QHsmTst::s0;
 56 }
 57
 58 QSTATE QHsmTst::s21(QEvent const *e) {

98 Chapter 4: Implementing Behavioral Inheritance
Translating the statechart from Figure 4.3 into code is straightforward and
requires adherence to just a few simple rules. Consider, for instance, the
QHsmTst::s21() state handler (Listing 4.5, lines 58–74). First, look up this state in
the diagram and trace around its state boundary. You need to implement all transi-
tions originating at this boundary, as well as all internal transitions enlisted in this
state. Additionally, if an initial transition is embedded directly in the state, you need
to implement it as well. For state s21, the transitions that originate at the boundary
are transition b and self-transition h. In addition, the state has an entry action, an
exit action, and an initial transition.

Coding of entry and exit actions is the simplest. You just intercept the reserved
signals Q_ENTRY_SIG or Q_EXIT_SIG, enlist actions you want to execute, and termi-
nate the lists with return 0 (Listing 4.5, lines 60, 61).

To code the initial transition, you intercept the reserved signal Q_INIT_SIG, enlist
the actions, and then designate the target substate through the Q_INIT() macro (line
62), after which you exit the state handler with return 0.

 59 switch (e->sig) {
 60 case Q_ENTRY_SIG: printf("s21-ENTRY;"); return 0;
 61 case Q_EXIT_SIG: printf("s21-EXIT;"); return 0;
 62 case Q_INIT_SIG: printf("s21-INIT;"); Q_INIT(&QHsmTst::s211);
 return 0;
 63 case B_SIG: printf("s21-C;"); Q_TRAN(&QHsmTst::s211); return 0;
 64 case H_SIG: // self transition with a guard
 65 if (!myFoo) { // test the guard condition
 66 printf("s21-H;");
 67 myFoo = 1;
 68 Q_TRAN(&QHsmTst::s21); // self transition
 69 return 0;
 70 }
 71 break; // break to return the superstate
 72 }
 73 return (QSTATE)&QHsmTst::s2; // return the superstate
 74 }
 75
 76 QSTATE QHsmTst::s211(QEvent const *e) {
 77 switch (e->sig) {
 78 case Q_ENTRY_SIG: printf("s211-ENTRY;"); return 0;
 79 case Q_EXIT_SIG: printf("s211-EXIT;"); return 0;
 80 case D_SIG: printf("s211-D;"); Q_TRAN(&QHsmTst::s21); return 0;
 81 case G_SIG: printf("s211-G;"); Q_TRAN(&QHsmTst::s0); return 0;
 82 }
 83 return (QSTATE)&QHsmTst::s21; // return the superstate
 84 }

An Annotated Example 99
You code a regular transition in a very similar way, except that you intercept a
custom-defined signal (e.g., B_SIG, line 63), and you use the Q_TRAN() macro to des-
ignate the target state. Again, you exit state handler with return 0.

Coding a transition with a guard is a little more involved. Lines 64 through 71
of Listing 4.5 show how to handle this case. As before, you intercept the custom sig-
nal (here, H_SIG), except now you test the guard condition inside an if (…) state-
ment (line 65) first. You place the transition actions, Q_TRAN() macro, and return 0
inside the TRUE branch of the if statement (lines 66–69). Because the return is
placed inside the if statement, the code following the if statement executes only
when the guard expression evaluates to FALSE. When that happens, you break out of
the switch (line 71) and return the superstate from the state handler (to indicate
that the event has not been handled).

The last step of every state handler designates the superstate by returning the cor-
responding state handler to the caller. In the case of state s21, this is the s2() state
handler (line 73). Please note the necessary type cast to QSTATE.

Listing 4.5 demonstrates many more examples of the simple rules just mentioned.
Note that this implementation automatically handles the execution of transition
chains — that is, the computation of the LCA state and the execution of appropriate
exit actions, entry actions, and initial transitions. Consequently, no manual coding of
transition chains is necessary.

4.2.3 Initialization and Dispatching Events

The test harness for this HSM (Listing 4.6) consists of a simple character interface
through which you inject events to the state machine by typing the characters ‘a’
through ‘h’ on your keyboard. Typing a character outside of this range ends the test.

The interesting points in Listing 4.6 are instantiating the state machine (line 1),
triggering the initial transition through QHsm::init() (line 9), and dispatching
events through QHsm::dispatch() (line 17).

Listing 4.6 Test harness for QHsmTst statechart

 1 static QHsmTst test; // instantiate the QHsmTst state machine
 2 static QEvent const testEvt[] = { // static event instances
 3 {A_SIG, 0, 0}, {B_SIG, 0, 0}, {C_SIG, 0, 0}, {D_SIG, 0, 0},
 4 {E_SIG, 0, 0}, {F_SIG, 0, 0}, {G_SIG, 0, 0}, {H_SIG, 0, 0}
 5 };
 6
 7 main() {
 8 printf("QHsmTst example, v.1.00, QHsm: %s\n", QHsm::getVersion());
 9 test.init(); // take the initial transition
 10 for (;;) { // for-ever
 11 printf("\nSignal<-");

100 Chapter 4: Implementing Behavioral Inheritance
4.2.4 Test Run

As always, I strongly recommend that you run this example on your PC (Exercise
4.4) and correlate the output with the statechart shown in Figure 4.3. You can learn
a lot about the mechanics of statecharts by playing with this application.

Exercise 4.4 Find the Qhsmtst.exe application on the accompanying CD-ROM and
execute it. Try out all possible transitions. Compare the application out-
put with the test log from Listing 4.7.

Listing 4.7 QHsmTst test session log

Listing 4.7 shows an example of a test session log. In line 1, you see the version of
the test harness, as well as the library (the QHsm implementation is linked in from a
library). Line 2 shows the effect of the initial transition triggered by QHsm::init().
Injecting signals into the state machine starts from line 3. Every stimulus (odd line
numbers) is followed by the response (even line numbers) in the form of the transi-
tion chain printout. From these printouts, you can always determine the sequence of

 12 char c = getc(stdin);
 13 getc(stdin); // discard '\n'
 14 if (c < 'a' || 'h' < c) { // character out of range?
 15 return 0; // terminate
 16 }
 17 test.dispatch(&testEvt[c - 'a']); // dispatch event
 18 }
 19 return 0;
 20 }

 1 QHsmTst example, version 1.00, libraries: QHsm 2.2.2
 2 top-INIT;s0-ENTRY;s0-INIT;s1-ENTRY;s1-INIT;s11-ENTRY;
 3 Signal<-a
 4 s1-A;s11-EXIT;s1-EXIT;s1-ENTRY;s1-INIT;s11-ENTRY;
 5 Signal<-e
 6 s0-E;s11-EXIT;s1-EXIT;s2-ENTRY;s21-ENTRY;s211-ENTRY;
 7 Signal<-e
 8 s0-E;s211-EXIT;s21-EXIT;s2-EXIT;s2-ENTRY;s21-ENTRY;s211-ENTRY;
 9 Signal<-a
 10
 11 Signal<-h
 12 s21-H;s211-EXIT;s21-EXIT;s21-ENTRY;s21-INIT;s211-ENTRY;
 13 Signal<-h
 14
 15 Signal<-x

Heuristics and Idioms 101
actions, as well as the active state (the last state entered). For instance, in line 3, the
state machine is in state s11 because it is the last state entered in the previous line.
Signal a injected in this line triggers a self-transition inherited from state s1. The
statechart responds in line 4 by executing the transition sequence described in Sec-
tion 4.1.4.

Interestingly, in hierarchical state machines, the same transition can cause differ-
ent behavior, depending on which state inherits the transition. For example, in lines 5
and 7, the injection of signal e triggers the same state transition each time (the state-
chart has only one transition e in state s0). However, the responses of the state
model in lines 6 and 8 are different because transition e fires from different state con-
figurations — once when s11 is active (line 6) and next when s211 is active (line 8).

Additionally, in extended state machines, the response depends not only on the
stimulus and the state but on the value of the extended state variables. For example,
signal h triggers a transition in line 12 but is not handled in line 14, although the
state machine remains in the same state, s211. From the inspection of the statechart
in Figure 4.3, you can see that transition h in state s21 has a guard, which once eval-
uates to TRUE and the next time to FALSE.

After experimenting for a while with the QHsmTst statechart, you might want to
modify it to try out different state topologies. In fact, in this implementation of the
HSM, it is easy to change any aspect of the state model, even late in the develop-
ment process.11 The following two exercises give you some ideas of how you can
modify the statechart to learn even more from this example.

Exercise 4.5 Modify the state machine by moving transition e from s0 to s2 and by
changing the target of transition f in state s1 from s211 to s21.

Exercise 4.6 Change the initial transition in state s2 to target the s211 state rather
than s21 and observe the assertion failure on transition c. Change the
target of transition g in state s211 to top (see Section 4.1.4) and observe
another assertion failure. Explain the reasons for breaking the assertions.

4.3 Heuristics and Idioms
The behavioral inheritance meta-pattern presented here allows you to build execut-
able hierarchical state models directly in C++ (and C as well; see the C implementa-
tion coming up in Section 4.5). In this section, I have collected a few coding
heuristics and idioms that I found useful for constructing readable, efficient state

11. It is even easier to change the code than to redraw the state diagram.

102 Chapter 4: Implementing Behavioral Inheritance
machine code that is easy to maintain. Although illustrated in C++, most of the
guidelines apply equally well to the C implementation.

4.3.1 Structuring State Machine Code

To code your own HSMs, you just need to subclass QHsm and implement each state
in a separate state handler method. These state handlers must fulfill the simple con-
tract of returning the superstate every time they do not handle an event or returning
0 when they do. Other than that, you can structure the state handler methods arbi-
trarily. However, the following suggestions should help you avoid pitfalls and make
the structure of the state machine readily apparent.

You should construct complete state handlers — that is, state handler methods
that directly include all state machine elements pertaining to a given state (such as all
signals and all transitions). Consider the following code snippet.

Although in principle correct, the state handler MyHsm::stateA() is incom-
plete, because the action MyHsm::onMySig1() hides the Q_TRAN(&MyHsm::stateB)
transition. Worse, the way it is coded suggests that the MYSIG1_SIG signal triggers
an internal transition, which it does not. You can easily make the handler complete
again by breaking it up a little differently. Observe that the transition is conditional;
that is, it has a guard condition in statechart lingo. You should code this guard
explicitly, as in the following code fragment.

QSTATE MyHsm::stateA(QEvent const *e) {
 switch (e->sig) {
 . . .
 case MYSIG1_SIG:
 onMySig1(); // internal transition ???
 return 0; // event handled
 . . .
 }
 return (QSTATE)&MyHsm::top; // event unhandled, return superstate
}

void MyHsm::onMySig1() { // definition of onMySig() method ...
 if (myA && !myB && myC > 0 ...) { // conditionally transition to B
 Q_TRAN(&MyHsm::stateB);
 }
}

QSTATE MyHsm::stateA(QEvent const *e) {
 switch (e->sig) {
 . . .
 case MYSIG1_SIG:
 if (sig1Guard()) { // explicit guard condition

Heuristics and Idioms 103
Now the MyHsm::stateA() state handler conveys the correct information. In
particular, it’s clear that the transition to stateB has a guard.

Lucid coding requires you to include every state machine element directly and
explicitly in a state handler that you would draw in a statechart diagram for this
state. Instead of splitting the code ad hoc, you should partition it into elements of
statecharts — that is, actions, guards, junctions, and choice points (structured if–
then–else statements). This division makes the one-to-one mapping between dia-
grams and code obvious. In fact, complete and compact state handlers are one of the
most succinct and efficient textual representations of HSMs (see Exercise 4.7).

Exercise 4.7 Most design automation tools capable of translating statechart diagrams
to code internally represent statecharts in textual format. For example,
the ROOM method [Selic+ 94] defines a ROOM linear form representa-
tion, which is capable of capturing HSMs among other things. Try to
invent your own textual notation, succinct yet expressive, to represent
statecharts. Use your notation to write down a specification for state s21
of the statechart from Figure 4.3. Compare it with the QHsmTst::s21()
state handler code in Listing 4.5.

4.3.2 Choosing the Right Signal Granularity

Nothing affects state machine complexity and efficiency as much as the right sig-
nal granularity. The optimal granularity of signals falls somewhere between the
two extremes of too fine and too coarse.

The granularity of signals is too fine if you repeatedly find the same groups of
signals handled in the same way. For example, recall the Quantum Calculator
example (Figure 1.3 in Chapter 1). At the statechart level, the calculator HSM han-
dles all numerals 1 through 9 in the same way. Therefore, introducing a separate
signal for each numeral would lead to a signal granularity that is too fine, which

 Q_TRAN(&MyHsm::stateB); // explicit state transition
 return 0;
 }
 break;
 . . .
 }
 return (QSTATE)&MyHsm::top;
}

int MyHsm::sig1Guard() { // definition of sig1Guard() guard ...
 return (myA && !myB && myC > 0 ...);
}

104 Chapter 4: Implementing Behavioral Inheritance
would unnecessarily bloat the state handler methods. Instead, the Quantum Calcu-
lator statechart represents the whole group of numerals 1 through 9 as one signal,
IDC_1_9.

The granularity of signals is too coarse if you find yourself frequently using guard
conditions that test event parameters. In this case, event parameters are the de facto
signals. Consider the Windows message (signal) WM_COMMAND, frequently used in
Windows GUI applications (e.g., Listing 1.2 in Chapter 1). This signal is too coarse,
because clients typically must test parameters associated with the WM_COMMAND (most
frequently LOWORD(wParam)) to choose the desired behavior. In other words, values
of LOWORD(wParam) are the de facto signals. In this case, the too-coarse signal gran-
ularity results in a suboptimal (and not very elegant) additional switch statement.

When you encounter signals that are too coarse, the first thing you should try is to
redefine or remap signals to the right level of granularity (the Quantum Calculator
application exemplifies the remapping option). However, if you cannot do this, you
should include all the de facto signals directly in your state handlers. All too often,
the additional layer of signal dispatching is moved to separate methods, which
makes state handlers incomplete (in the sense discussed in Section 4.3.1).

4.3.3 UML-Compliant HSMs

Any nontrivial language, including the graphical language of statecharts, allows
making constructs that not only happen to be false but are meaningless and some-
times self-contradicting. The latter statements are said to be malformed. A big part
of the UML specification [OMG 01] deals with specifying so-called well-formedness
rules that allow the detection of malformed constructs. Examples of such UML rules
for statecharts are: The top state cannot be a source of a transition, or: A composite
state can have, at most, one initial transition. Many of these rules (e.g., the first
example) are automatically enforced by the structure of the QHsm class. For instance,
the QHsm::top() state handler cannot be overridden, so it cannot become a source
of a transition. In addition, by following the basic guidelines outlined earlier, you
automatically satisfy many well-formedness rules. For example, in a complete state
handler, you can’t define two initial transitions (the second example of well-formed-
ness rules) because a switch statement with two identical cases (Q_INIT_SIG) will
not compile.

Except for the slightly altered transition chain sequence (Section 4.4.3), the
behavioral inheritance meta-pattern allows you to build UML-compliant state
machines. However, it is also possible to build state machines violating the UML
well-formedness rules. Whereas, in general, noncompliance with the UML specifica-
tion can have consequences that are hard to foresee, the following extension to the
UML specification is safe and often leads to simpler state models.

In the UML specification, composite states (states with substates) are significantly
different from simple states (states without substates). One well-formedness rule
concerning composite states is: “If a [not concurrent] composite state is active then

Heuristics and Idioms 105
exactly one of its substates is active” [OMG 01, page 2-162]. In view of the OO
analogy between state hierarchies and class taxonomies, if this rule were applied to
classes, it would require that every class that has subclasses must necessarily be
abstract (cannot have instances). However, it often happens that an abstraction cap-
tured in a class can be used directly (instantiated) in some parts of the code. Indepen-
dently, someone else might specialize this abstraction by creating subclasses, but this
should not break the earlier code that instantiated the original class. You cannot
foresee whether someone will subclass your class (unless it is explicitly abstract), nei-
ther can you prevent subclassing.12

Following the OO analogy, it is logical to relax the UML rule and allow compos-
ite states to become active without any of their substates being active. Consider, for
example, the C comment parser state machine discussed in Chapter 3. Figure 4.4a
shows a UML-compliant hierarchical version of the C comment parser state machine
(compare it with the classical FSM shown in Figure 3.1 in Chapter 3). Unfortunately,
the hierarchical version is significantly more complex than the flat FSM (it adds two
more states and two more initial transitions) because the high-level code and com-
ment states provide only groupings for their substates and add little toward seman-
tics. The non-UML-compliant version (Figure 4.4b), on the other hand, is no more
complex than the classical FSM because it has exactly the same number of states and
transitions. The difference between the UML-compliant and the -noncompliant ver-
sions is that the code and comment states each has only one substate, which is not
necessarily active when its superstate is active (note the lack of initial transitions in
the code and comment states).

Figure 4.4 An HSM representation of the C comment parser from Chapter 3; (a)

UML-compliant, (b) not UML-compliant

12. In Java, you can use the final keyword, but in C++, you generally cannot prevent subclassing.

comment

STAR/

star

code

slash

SLASH STAR

SLASH

STAR

CHAR

CHAR, SLASH

CHAR/
SLASH/

comment

STAR/

star

code

slash

SLASH STAR

SLASH

STAR

CHAR

CHAR, SLASH

code_char

CHAR/
SLASH/

com_char

(a) (b)

106 Chapter 4: Implementing Behavioral Inheritance
The advantage of the hierarchical version over the flat state machine from Chap-
ter 3 is that HSMs are more intuitive and extensible. For example, when the classical
FSM (Figure 3.1 in Chapter 3) encounters a slash character while in the code state, it
transitions to the slash state, leaving the code state. However, the slash character
also can represent a division operator, so conceptually, the parser should remain in
the code state until it collects enough evidence for a conclusive decision that the
parser is no longer parsing code. This is the exact behavior of both hierarchical mod-
els (Figure 4.4a, b). All things being equal, however, the model in Figure 4.4b is
much simpler than the model in Figure 4.4a.

Exercise 4.8 Implement the HSM from Figure 4.4b in C and in C++. Subsequently,
extend the hierarchical C comment parser to count the number of com-
ment blocks (/* … */), as well as the number of comment characters
(see Exercise 3.10 in Chapter 3). Hint: Count the number of entries into
the comment state.

4.4 The Event Processor
In principle, at this point you should be able to successfully instantiate the
behavioral inheritance meta-pattern in your own statechart implementations.
However, you will code more efficiently and with greater confidence when you
understand the internal workings of the QHsm class. In this section, I peek under
the hood and examine the event processor, which performs the work of executing
actions and transitions.

4.4.1 Initializing the State Machine: The init() Method

As mentioned earlier, the purpose of QHsm::init() is to trigger the initial transition
and to recursively enter the submachine of the top state (Figure 4.2). You must call
this method only once for a given state machine before dispatching any events to it.
QHsm::init() (1) triggers the initial transition defined in the initial pseudostate
and (2) “drills” into the state hierarchy until it reaches a leaf state.

Almost all methods of QHsm, including init(), use the helper macro TRIGGER()
internally.

The goal of this macro is to present one of the reserved signals (Q_EMPTY_SIG,
Q_ENTRY_SIG, Q_EXIT_SIG, or Q_INIT_SIG) to a given state handler, state_.
Please note the characteristic syntax of handler method invocation based on the

#define TRIGGER(state_, sig_) \
 Q_STATE_CAST((this->*(state_))(&pkgStdEvt[sig_]))

The Event Processor 107
pointer-to-member function ((this->*state_)(…)). Because QState is not
exactly recursive (see Section 4.1.2), the value returned by the state handler from
QPseudoState must necessarily be cast onto QState, which the macro TRIGGER()
accomplishes through another macro, Q_STATE_CAST(). Q_STATE_CAST() is com-
piler dependent and should be defined as reinterpret_cast<QState>(…) for the
C++ compilers that support the new type casts and as the C-style cast (QState)(…)
for the C++ compilers that don’t.13

Listing 4.8 Definition of the QHsm::init() method

13. For example, embedded C++ (EC++) compilers don’t support the new type casts.

Design by Contract in C/C++

Design by Contract (DBC) is a method of programming based on precisely defined
specifications of the various software components’ mutual obligations (contracts). The
central idea of this method is to inherently embed the contracts in the code and vali-
date them automatically at run time.

In C/C++, you can implement the most important aspects of DBC with assertions.
Throughout this book, I use customized assertion macros defined in the header file
qassert.h. These macros include

• REQUIRE(), to assert a precondition,
• ENSURE(), to assert a postcondition,
• INVARIANT(), to assert an invariant, and
• ASSERT(), to assert a general contract of another type.
Each of these macros performs a function similar to that of the standard library

facility assert(), and their different names serve only to document the purpose of the
contract. Section 8.2.1 in Chapter 8 covers DBC and qassert.h in more detail.

 1 void QHsm::init(QEvent const *e) {
 2 REQUIRE(myState == top && // HSM not executed yet
 3 mySource != 0); // we are about to dereference mySource
 4 register QState s = myState; // save myState in a temporary
 5 (this->*(QPseudoState)mySource)(e); // top-most initial transition
 6 // initial transition must go *one* level deep
 7 ASSERT(s == TRIGGER(myState, Q_EMPTY_SIG));
 8 s = myState; // update the temporary
 9 TRIGGER(s, Q_ENTRY_SIG); // enter the state
 10 while (TRIGGER(s, Q_INIT_SIG) == 0) { // init handled?
 11 // initial transition must go *one* level deep
 12 ASSERT(s == TRIGGER(myState, Q_EMPTY_SIG));

108 Chapter 4: Implementing Behavioral Inheritance
Listing 4.8 shows the definition of the init() method. The preconditions14 in
lines 2 and 3 assert that the HSM has not been executed yet (myState points to the
top state) and that mySource has been initialized to the initial pseudostate handler
by the QHsm constructor. The initial transition of the top submachine is triggered in
line 5. According to the limitation mentioned in Section 4.1.3, the initial transition
can target only a direct substate of a given state, which init() asserts in line 7. The
while loop in line 10 triggers an initial transition in the current state and tests the
return value to find out if the state handler has actually handled the transition. If so
(the state handler returns 0), the body of the loop asserts that the target is a direct
substate of the source (lines 11, 12) and then enters the target substate. The loop
continues until there are no more initial transitions to take.

4.4.2 Dispatching Events: The dispatch() Method

The choice of the state handler signature makes the most frequently used dis-
patch() method almost trivial. Its only job is to scan the state hierarchy (chain of
responsibility) until some state handles the event (in which case, it returns 0) or the
top state is reached (in which case, it also returns 0). Listing 4.9 contains the com-
plete code.

Listing 4.9 Definition of the QHsm::dispatch() method

The dispatch() method traverses the state hierarchy starting from the currently
active state myState. It advances up the state hierarchy (i.e., from substates to super-
states), invoking all the state handlers in succession. At each level of state nesting, it
intercepts the value returned from a state handler to obtain the superstate needed to
advance to the next level.

By using the mySource attribute (instead of an automatic variable) to invoke state
handlers, the current level of hierarchy (i.e., the potential source of a transition) is
accessible to tran() (see the next section). Again, because QState, by definition, is

 13 s = myState;
 14 TRIGGER(s, Q_ENTRY_SIG); // enter the substate
 15 }
 16 }

14. See the sidebar “Design by Contract in C/C++” on page 107.

 1 void QHsm::dispatch(QEvent const *e) {
 2 for (mySource = myState; mySource != 0;
 3 mySource = Q_STATE_CAST((this->*mySource)(e)))
 4 {}
 5 }

The Event Processor 109
not exactly recursive (see Section 4.1.2), the Q_STATE_CAST() type cast in line 3 of
Listing 4.9 is necessary.

Exercise 4.9 The QHsm class provides the “is-in-state” query (see the declaration of
isIn() in Listing 4.1, line 11). Write the body of this method. Note that
in HSMs, to be in a state also means to be in all substates of that state.
Hint: You can implement the is-in-state query using the same state hier-
archy traversal as the dispatch() method.

4.4.3 Static and Dynamic State Transitions: Macros Q_TRAN()

and Q_TRAN_DYN()
As you saw in all state handler examples presented so far, you code state transitions
by invoking the macro Q_TRAN() (defined in Listing 4.1, lines 20–23). At the heart
of this macro is the protected tranStat() method, which actually drives state han-
dlers to accomplish a static state transition. Almost all state transitions are static,
which means that both the source and the target of the transition do not change at
run time. This characteristic offers an opportunity to optimize the execution of such
transitions, because the expensive determination of the transition chain (finding out
which exit and entry actions and initial transitions to execute) can be done only once
instead of each time the transition is taken.

Nonetheless, some transitions might need to change their targets at run time (e.g.,
transitions to history).15 For these rare occasions, the QHsm class offers a dynamic
state transition that you code with the Q_TRAN_DYN() macro (defined in Listing 4.1,
line 29). This macro invokes the protected method tran() rather than tranStat().

Exercise 4.10 Q_TRAN() is an optimization only with respect to Q_TRAN_DYN(), which
means that you should be able to replace Q_TRAN() with Q_TRAN_DYN()
(with the loss of optimization). Modify the HSM example described in
Section 4.2 by replacing Q_TRAN() with Q_TRAN_DYN(). Recompile and
verify that the state machine works as before.

Executing state transitions is by far the most complex part of the HSM imple-
mentation. Figure 4.5 illustrates the challenge. This diagram shows the inheritance
tree of states comprising the Quantum Calculator statechart (Figure 1.3 in Chapter
1) and two exemplary transitions. As described earlier in this chapter (Section

15. Chapter 6 presents another example (related to inheritance of entire state machines) in which you need to use
dynamic state transitions.

110 Chapter 4: Implementing Behavioral Inheritance
4.1.4), a transition execution sequence involves the exit of all states up to the LCA,
then recursive entry into the target state. Exiting the current state configuration is
relatively straightforward because it follows the natural direction of navigation
through the state hierarchy (denoted by the behavioral inheritance arrow in Figure
4.5). However, the entry to the target requires navigating in the opposite direction
(recall that state handlers return only the superstate).

Figure 4.5 Behavioral inheritance tree of states in the Quantum Calculator

statechart; the heavy-lined arrows indicate state transitions triggered

by C (cancel) and OPER (operator); the natural direction of navigation

through the model is from substates to superstates, as indicated by the

behavioral inheritance arrow

The solution to the problem of entering the target state configuration is to first
record the exit path from the target to the LCA, without executing any actions. You
can do this by dispatching the reserved empty signal (Section 4.1.3), which causes
every state handler to return the superstate without causing any side effects.16 After
the exit path has been recorded in that way, it can easily be turned into the entry path
by playing it backwards, which is the desired order.17

This strategy immediately suggests an optimization. Instead of rediscovering the
entry path every time, one might as well store it permanently in a static object and
subsequently reuse the path information for a much more efficient execution of the
transition. However, this works only for static transitions (coded with Q_TRAN()),
where the target never changes at run time. Dynamic transitions (coded with
Q_TRAN_DYN()) cannot use this optimization and must determine the transition exe-
cution sequence every time.

top

calc

negated1 opEntered negated2 operand2

result begin

ready operand1

zero1 int1 frac1 zero2 int2 frac2

behavioral
inheritance

cancel (C)
state transition

operator (OPER)
state transition

16. It is the responsibility of the client (you) to design state handler methods in such a way that the empty signal (0)
causes no side effects.

17. One of the first documented uses of this method was to get rid of the mythological Minotaur (half-man, half-
bull monster on the island of Crete). The Athenian hero Theseus unraveled a ball of thread on his way to the
Minotaur’s labyrinth, killed the beast, and followed the thread to find his way out.

The Event Processor 111
In the next section, I discuss the somewhat simpler QHsm::tran() dynamic tran-
sition, and in the following section, I cover the QHsm::tranStat() static transition
as an optimization of the first technique.

4.4.4 Dynamic State Transition: The tran() Method

The goal of the QHsm::tran() method is to execute transition sequences (i.e., chains
of exit and entry actions and initial transitions) by invoking the appropriate state
handlers in the correct order using the appropriate standard signal for each invoca-
tion. Unlike init() and dispatch(), which are invoked directly by clients, tran()
is protected and can be invoked only indirectly from state handlers (more precisely,
from the dispatch() method as in Listing 4.9, line 3).

The tran() method consists of two major steps. In the first step, tran() per-
forms a traversal of the state hierarchy similar to that of dispatch(), but with the
objective to exit all states up to the level in which the transition is defined. This step
covers the case of an inherited state transition — that is, the transition defined at a
level higher than the currently active state. For example, Figure 4.6 shows the details
of the OPER transition from Figure 4.5. This transition is defined at the level of the
ready state, from which the result and begin states inherit. When a client calls
dispatch() with the OPER event, dispatch() invokes the currently active state
first, which happens to be the result state. This state does not “know” how to han-
dle the OPER event, so it returns the superstate. The dispatch() method then loops
to the ready state, in which OPER triggers the transition to opEntered. However, the
correct exit of the current state configuration must include exiting result before
exiting ready. Figure 4.6 shows this segment of the transition in a dashed line. The
figure also shows the state of the myState and mySource pointers at the time that
dispatch() invokes tran(). As you can see, myState still points to the previously
active state (result), whereas mySource points to the state handler that invoked
tran() (ready), which is the source of the transition.

Figure 4.6 Two segments of an inherited state transition

top

calc

opEntered

result begin

readymySource

myState

inherited segment
of OPER transitionsource state–

dependent segment
of OPER transition

112 Chapter 4: Implementing Behavioral Inheritance
Only after exiting all states up to the source of the transition can tran() proceed
with the second step, which is execution of the transition itself. This step tries to
optimize the workload by minimizing the number of “probing” invocations of state
handlers with empty signals (i.e., with the sole purpose of eliciting the superstate).
The optimization relies on testing directly for all the simplest source–target state con-
figurations, which are most likely to occur in practice. Moreover, the strategy is to
order these configurations in such a way that the information about the state config-
uration obtained from earlier steps can be used in later steps. Figure 4.7 shows such
ordering of state transition topologies, and Table 4.1 (page 115) enlists the tests
required to determine a given configuration.

Figure 4.7 Ordering of all possible source and target state configurations used in

QHsm::tran()

Exercise 4.11 Compare Figure 4.7 with the example statechart from Figure 4.3 on
page 95. Convince yourself that transitions a through g in the example
statechart correspond to the cases enumerated in Figure 4.7 (e.g., signal
a triggers the state transition described in Figure 4.7a, and so on).

Listing 4.10 Definition of the dynamic state transition QHsm::tran() method

.

.

.

.

.

.

(a) (b) (c) (d)

(e) (f) (g)

.

.

.

.

.

.

.

.

 1 void QHsm::tran(QState target) {
 2 REQUIRE(target != top); // cannot target "top" state
 3 QState entry[7], p, q, s, *e, *lca;
 4 for (s = myState; s != mySource;) {
 5 ASSERT(s); // we are about to dereference s
 6 QState t = TRIGGER(s, Q_EXIT_SIG);
 7 if (t) { // exit action unhandled, t points to superstate
 8 s = t;
 9 }
 10 else { // exit action handled, elicit superstate

The Event Processor 113
 11 s = TRIGGER(s, Q_EMPTY_SIG);
 12 }
 13 }
 14
 15 *(e = &entry[0]) = 0;
 16 *(++e) = target; // assume entry to target
 17
 18 // (a) check mySource == target (transition to self)
 19 if (mySource == target) {
 20 TRIGGER(mySource, Q_EXIT_SIG); // exit source
 21 goto inLCA;
 22 }
 23 // (b) check mySource == target->super
 24 p = TRIGGER(target, Q_EMPTY_SIG);
 25 if (mySource == p) {
 26 goto inLCA;
 27 }
 28 // (c) check mySource->super == target->super (most common)
 29 q = TRIGGER(mySource, Q_EMPTY_SIG);
 30 if (q == p) {
 31 TRIGGER(mySource, Q_EXIT_SIG); // exit source
 32 goto inLCA;
 33 }
 34 // (d) check mySource->super == target
 35 if (q == target) {
 36 TRIGGER(mySource, Q_EXIT_SIG); // exit source
 37 --e; // do not enter the LCA
 38 goto inLCA;
 39 }
 40 // (e) check rest of mySource == target->super->super... hierarchy
 41 *(++e) = p;
 42 for (s = TRIGGER(p, Q_EMPTY_SIG); s;
 43 s = TRIGGER(s, Q_EMPTY_SIG))
 44 {
 45 if (mySource == s) {
 46 goto inLCA;
 47 }
 48 *(++e) = s;
 49 }
 50 TRIGGER(mySource, Q_EXIT_SIG); // exit source
 51 // (f) check rest of mySource->super == target->super->super...
 52 for (lca = e; *lca; --lca) {
 53 if (q == *lca) {
 54 e = lca - 1; // do not enter the LCA
 55 goto inLCA;
 56 }
 57 }

114 Chapter 4: Implementing Behavioral Inheritance
Listing 4.10 shows the complete implementation of QHsm::tran(). In the first
step (lines 4–13), tran() exits all states from the currently active state (myState) up
to the level in which the transition is defined (mySource) to cover the case of an
inherited state transition. While exiting the states, tran() must differentiate
between the case in which the exit action is not handled (the state handler returns the
superstate) and the case in which the exit action is executed (the state handler returns
0). In the latter case, the state handler is triggered again (lines 10–12) with the empty
event just to elicit the superstate.

In the second step (Listing 4.10, lines 15–81), tran() executes all the actions
associated with the change of state configuration. Although this step is rather elabo-
rate, the most frequently used source–target configurations are handled efficiently
because only a small fraction of the code is executed. As described earlier, the
method uses the automatic array entry[] (Figure 4.8) to record the entry path to
the target in order to execute entry actions in the correct order. Table 4.1 describes
the handling of all possible source–target state configurations.

 58 // (g) check each mySource->super->super..for each target...
 59 for (s = q; s; s = TRIGGER(s, Q_EMPTY_SIG)) {
 60 for (lca = e; *lca; --lca) {
 61 if (s == *lca) {
 62 e = lca - 1; // do not enter the LCA
 63 goto inLCA;
 64 }
 65 }
 66 TRIGGER(s, Q_EXIT_SIG); // exit s
 67 }
 68 ASSERT(0); // malformed HSM
 69 inLCA: // now we are in the LCA of mySource and target
 70 ASSERT(e < &entry[DIM(entry)]); // new entry e must fit in
 71 while (s = *e--) { // retrace the entry path in reverse order
 72 TRIGGER(s, Q_ENTRY_SIG); // enter s
 73 }
 74 myState = target; // update current state
 75 while (TRIGGER(target, Q_INIT_SIG) == 0) {
 76 // initial transition must go *one* level deep
 77 ASSERT(target == TRIGGER(myState, Q_EMPTY_SIG));
 78 target = myState;
 79 TRIGGER(target, Q_ENTRY_SIG); // enter target
 80 }
 81 }

The Event Processor 115
Figure 4.8 The entry path to the target state recorded in entry[]; pointer e

points to the entry last filled; pointer lca points to the LCA in the steps

shown in Figure 4.7f and g; lca - 1 points to the first state that needs

to be entered in the steps shown in Figure 4.7f and g (see Listing 4.10)

Table 4.1 Processing source–target state configurations from Figure 4.7; line

numbers refer to Listing 4.10

Step Test Description

a source == target (Self-transition) Can be checked directly without
probing any superstates. Involves exit from source
and entry to target (lines 18–22).

b source ==
 target->super

Requires probing the superstate of the target state.
Involves only entry to source but no exit from target
(lines 23–27).

c source->super ==
 target->super

(Most common transition topology) Requires addi-
tional probing of the superstate of the source state.
Involves exit from source and entry to target (lines
28–33).

d source->super ==
 target

Does not require additional probing. Involves only
exit from source but not entry to target (lines 34–39).

e source == any of

 target->super …
Requires probing the superstates of the target until a
match is found or until the top state is reached. The
target state hierarchy is stored in the automatic
array entry[] (Figure 4.8) and subsequently is
reused to retrace the entry in the reverse order (down
the state hierarchy). This transition topology is the
last that does not require exiting the original source
state, so if the given transition does not fall into this
category, the source must be exited (lines 40–50).

entry[0] 0
entry[1] target
entry[2] target->super
.

entry[n] e.g., top
entry[..] unused . . .

e
lca

lca-1

record
execute

116 Chapter 4: Implementing Behavioral Inheritance
Once tran() detects the state configuration and executes all necessary exit
actions up to the LCA, it must enter the target state configuration. Thanks to the
entry path saved in step e, this is straightforward (Listing 4.11, lines 71–73). The
assertion in line 70 checks that the automatic array entry[] does not overflow,
which can happen if the transition chain has more than seven18 steps.

The target state can be composite and can have an initial transition. Therefore, in
lines 74 through 80, tran() iterates until it detects a leaf state (the initial transition
returns non-0). Here again, as in the init() method, an assertion checks that the
initial transition goes exactly one level deep in the state hierarchy (line 77).

4.4.5 Static State Transition: The tranStat() Method and

the Tran Class

The static state transition represents an optimization of the dynamic transition in
which the complete transition chain is stored in a static instance of class Tran. Once
initialized, the Tran object allows rapid execution of the transition sequence without
rediscovering the transition topology.

Listing 4.1, lines 15 through 18 (page 85), shows the declaration of the Tran
class, which is designed for storage efficiency. This class can store a transition chain
of up to seven19 states. The myChain[] attribute stores the states visited at each step,
whereas the myActions attribute stores the default signals to be dispatched at each
step. Because there are only three default signals, it is sufficient to designate only two
bits per step to represent the signal. The bit combinations are as follows: (0x1 for
Q_INIT_SIG, 0x2 for Q_ENTRY_SIG, and 0x3 for Q_EXIT_SIG).

f source->super ==
 any of

 target->super …

Requires traversal of the target state hierarchy stored
in the array entry[] to find the LCA (lines 51–57).
As shown in Figure 4.8, the subsequent entry pro-
ceeds from lca-1 (line 54).

g any of

source->super … ==

 any of target …

Requires traversal of the target state hierarchy stored
in the array entry[] for every superstate of the
source. Because every scan for a given superstate of
the source exhausts all possible matches for the LCA,
the source’s superstate can be safely exited (lines 58–
67). As shown in Figure 4.8, the subsequent entry
proceeds from lca-1 (line 62).

18. Of course, you can change this number to anything you like by redeclaring entry[] in line 3 of Listing 4.10.
19. This number is arbitrary, and you can change it for your particular application.

The Event Processor 117
Now you can understand that specifying a transition requires using the preproces-
sor macro Q_TRAN(), rather than directly invoking tranStat(), because every tran-
sition requires a separate static storage for the associated transition object. As shown
in Listing 4.1, line 26, Q_TRAN() defines such a static Tran object for every transi-
tion. To localize the scope of this object to a given transition, the macro wraps it in a
dummy (optimized away) if (1) {…} else statement, so that you can safely use it
as a single instruction terminated with a semicolon (even inside compound if state-
ments, without causing the dangling else problem).

Listing 4.11 Definition of the static state transition QHsm::tranStat()

Listing 4.11 shows QHsm::tranStat(), which takes the preallocated static tran-
sition object tran as an argument. The first step of tranStat() (lines 4–13) is iden-
tical to the first step in tran(). The purpose of this step is to exit the currently active
state configuration up to the level of the transition source (which can be different
from the active state for inherited state transitions).

In the second step (Listing 4.11 lines 14–24), tranStat() executes all the actions
associated with the change of state configuration. If the transition object is not initial-
ized (lines 14–16), tranStat() initializes it with tranSetup() (see next section).

 1 void QHsm::tranStat(Tran *tran, QState target) {
 2 REQUIRE(target != Q_STATE_CAST(top)); // cannot target "top" state
 3 register QState s;
 4 for (s = myState; s != mySource;) {
 5 ASSERT(s); // we are about to dereference s
 6 QState t = TRIGGER(s, Q_EXIT_SIG);
 7 if (t) { // exit action unhandled, t points to superstate
 8 s = t;
 9 }
 10 else { // exit action handled, elicit superstate
 11 s = TRIGGER(s, Q_ EMPTY _SIG);
 12 }
 13 }
 14 if (tran->myActions[0] == 0) { // is the tran object initialized?
 15 tranSetup(tran, target); // setup the transition object
 16 }
 17 else { // transition object initialized, execute transition chain
 18 register QState *c = &tran->myChain[0];
 19 register unsigned short a;
 20 for (a = tran->myActions>>1;a != 0; a >>= 2, ++c) {
 21 (this->*(*c))(&pkgStdEvt[a & 3]);
 22 }
 23 myState = *c;
 24 }
 25 }

118 Chapter 4: Implementing Behavioral Inheritance
Otherwise (lines 18–24), the transition boils down to traversing the prerecorded state
chain myChain and at each step triggering the appropriate signal (encoded in two bits
of the myActions bit mask) to the appropriate state handler.

Exercise 4.12 The event processor comprises the methods init(), dispatch(),
tran(), and tranStat() and controls all aspects of state machine exe-
cution. It is relatively easy to instrument the event processor code by
introducing “hooks” (callback methods) that are invoked under specific
circumstances. For example, try instrumenting an active-state hook that
is invoked whenever the active state changes. Most of the commercial
code-synthesizing tools use such hooks, among others, to animate state
diagrams during state transitions.

4.4.6 Initializing the QTran Object: The tranSetup() Method

The static Tran object passed as a parameter to tranStat() (Listing 4.1, line 26)
must be initialized the first time a given transition is taken. This initialization is per-
formed in tranSetup().

Method tranSetup() (Listing 4.12) essentially is identical to the second part of
the tran() method, except in addition to executing the transition, it also must
record the transition in the tran object passed as an argument.

The goal of tranSetup() is to record only the actions actually performed to min-
imize the length of the transition chain. For example, if a given state handler does
not handle entry or exit actions, these actions are not recorded in the tran object
(they are optimized away from subsequent executions of this transition).

Listing 4.12 QHsm::tranSetup() method

 1 void QHsm::tranSetup(Tran *tran, QState target) {
 2 QState entry[8], p, q, s, *c, *e, *lca;
 3 unsigned short a = 0;
 4
 5 #define RECORD(state_, sig_) \
 6 if (TRIGGER(state_, sig_) == 0) {\
 7 a |= ((sig_) << 14); \
 8 a >>= 2; \
 9 *c++ = (state_); \
 10 } else ((void)0)
 11
 12 c = &tran->myChain[0];
 13 *(e = &entry[0]) = 0;
 14 *(++e) = target; // assume entry to target

The Event Processor 119
 15
 16 // (a) check mySource == target (transition to self)
 17 if (mySource == target) {
 18 RECORD(mySource, Q_EXIT_SIG); // exit source
 19 goto inLCA;
 20 }
 21 // (b) check mySource == target->super
 22 p = TRIGGER(target, Q_EMPTY_SIG);
 23 if (mySource == p) {
 24 goto inLCA;
 25 }
 26 // (c) check mySource->super == target->super (most common)
 27 q = TRIGGER(mySource, Q_EMPTY_SIG);
 28 if (q == p) {
 29 RECORD(mySource, Q_EXIT_SIG); // exit source
 30 goto inLCA;
 31 }
 32 // (d) check mySource->super == target
 33 if (q == target) {
 34 RECORD(mySource, Q_EXIT_SIG); // exit source
 35 --e; // do not enter the LCA
 36 goto inLCA;
 37 }
 38 // (e) check rest of mySource == target->super->super... hierarchy
 39 *(++e) = p;
 40 for (s = TRIGGER(p, Q_EMPTY_SIG); s;
 41 s = TRIGGER(s, Q_EMPTY_SIG))
 42 {
 43 if (mySource == s) {
 44 goto inLCA;
 45 }
 46 *(++e) = s;
 47 }
 48 RECORD(mySource, Q_EXIT_SIG); // exit source
 49 // (f) check rest of mySource->super == target->super->super...
 50 for (lca = e; *lca; --lca) {
 51 if (q == *lca) {
 52 e = lca - 1; // do not enter the LCA
 53 goto inLCA;
 54 }
 55 }
 56 // (g) check each mySource->super->super..for each target...
 57 for (s = q; s; s = TRIGGER(s, Q_EMPTY_SIG)) {
 58 for (lca = e; *lca; --lca) {
 59 if (s == *lca) {

120 Chapter 4: Implementing Behavioral Inheritance
4.5 C Implementation
The C++ implementation of the behavioral inheritance meta-pattern is fundamen-
tally object oriented in that it takes advantage of data abstraction (packaging data
with functions into classes) and inheritance (the capability to define new classes
based on existing classes).

You can code such a design in a procedural language such as C, because, as men-
tioned in the introduction to this chapter, abstraction and inheritance are only rela-
tively low-level meta-patterns, just as behavioral inheritance is. Therefore, they can
be used in virtually any programming language, not necessarily an object-oriented
one. Appendix A describes techniques for implementing these concepts in C as a set
of idioms and preprocessor macros that I call “C+.”

In fact, “C+” implements the C++ object model so faithfully, that converting the
implementation of any C++ design into “C+” involves mostly a mechanical applica-
tion of simple translation rules. Moreover, the exercises used in Appendix A to illus-
trate “C+” concepts already prepare most of the elements for the “C+” HSM

 60 e = lca - 1; // do not enter the LCA
 61 goto inLCA;
 62 }
 63 }
 64 RECORD(s, Q_EXIT_SIG); // exit s
 65 }
 66 ASSERT(0); // malformed HSM
 67 inLCA: // now we are in the LCA of mySource and target
 68 ASSERT(e < &entry[DIM(entry)]); // new entry e must fit in
 69 while (s = *e--) { // retrace the entry path in reverse order
 70 RECORD(s, Q_ENTRY_SIG); // enter s
 71 }
 72 myState = target; // update current state
 73 while (TRIGGER(target, Q_INIT_SIG) == 0) {
 74 // initial transition must go *one* level deep
 75 ASSERT(target == TRIGGER(myState, Q_EMPTY_SIG));
 76 a |= (Q_INIT_SIG << 14);
 77 a >>= 2;
 78 *c++ = target;
 79 target = myState;
 80 RECORD(target, Q_ENTRY_SIG); // enter target
 81 }
 82 #undef RECORD
 83 *c = target;
 84 tran->myActions = (a >> (13 - (c - &tran->myChain[0]*2)) & 0x1;
 85 ENSURE(tran->myChain[0] != 0 && // transition initialized
 86 c < &tran->myChain[DIM(tran->myChain)]); // check overflow
 87 }

C Implementation 121
implementation. Therefore, in this section I just fill in a few missing pieces and high-
light only the most interesting parts of the code. The complete “C+” behavioral
inheritance implementation is available on the accompanying CD-ROM.

Note: Although I call it by the strange name “C+,” rest assured that the imple-
mentation is fully portable, ANSI C–compliant code, although it looks very
much like C++.

Please note that the C++ version of the QHsm class intentionally avoids polymor-
phism because it isn’t necessary for the most common uses of HSMs. Therefore,
although the “C+” QHsm class supports it,20 you can ignore polymorphism when you
derive your own state machines from it.

Before proceeding any further, you should skim through Appendix A (you can
skip the description of polymorphism at first), so that you will understand the “C+”
macros, naming conventions, and the idiomatic use of C in this section.

4.5.1 QHsm Class in “C+”

Listing 4.13 shows the “C+” declaration of the QHsm class. Contrast it with the C++
declaration (Listing 4.1). The “C+” QHsm class derives from Object (Listing 4.13,
line 5), which means that it inherits the virtual pointer VPTR. The two attributes
(state__ and source__) declared in lines 6 and 7 are both private (note the double
trailing underscore naming convention). The QHsm class declares the (empty) VTABLE
in line 8, which makes it ready for polymorphism. The rest of the elements in the
“C+” declaration correspond directly to the C++ implementation.

Listing 4.13 “C+” declaration of the QHsm class

20. I will use polymorphism in Chapter 6.

 1 typedef void (*QPseudoState)(struct QHsm *, QEvent const *);
 2 typedef QPseudoState (*QState)(struct QHsm *, QEvent const *);
 3 typedef QPseudoState QSTATE; /* return value from a state-handler */
 4
 5 SUBCLASS(QHsm, Object) /* Hierarchical State Machine base class */
 6 QState state__; /* the active state */
 7 QState source__; /* source state during a transition */
 8 VTABLE(QHsm, Object)
 9 METHODS
 10 /* public members */
 11 void QHsmInit(QHsm *me, QEvent const *e); /* initial transition */

122 Chapter 4: Implementing Behavioral Inheritance
4.5.2 QHsm Constructor and Destructor

In “C+” constructors and destructors, you need to write code explicitly that a C++
compiler synthesizes behind the scenes. The constructor must explicitly define and
initialize the class’s VTABLE, construct the part of the object controlled by the super-
class, and hook the virtual pointer. The destructor must explicitly destroy the part of
the object controlled by the parent. The following code fragment illustrates these ele-
ments for the QHsm class.

 12 void QHsmDispatch(QHsm *me, QEvent const *e); /* take RTC step */
 13 int QHsmIsIn(QHsm const *me, QState state); /* "is-in" query */
 14 /* static method (no "me" pointer) */
 15 char const *QHsmGetVersion(void);
 16
 17 /* protected members */
 18 CLASS(Tran_) /* protected inner class Tran_ */
 19 QState chain[7];
 20 unsigned short actions; /* action mask (2-bits for action) */
 21 METHODS
 22 END_CLASS
 23
 24 QHsm *QHsmCtor_(QHsm *me, QPseudoState initial); /* Ctor */
 25 void QHsmXtor_(QHsm *me); /* Xtor */
 26
 27 QSTATE QHsm_top(QHsm *me, QEvent const *); /* "top" state */
 28 #define QHsmGetState_(me_) ((me_)->state__)
 29 void QHsmTran_(QHsm *me, QState target); /* dynamic transition */
 30 void QHsmTranStat_(QHsm *me, Tran_ *t, QState target);
 31 #define Q_INIT(target_) (((QHsm*)me)->state__ = (QState)(target_))
 32 #define Q_TRAN(target_) if (1) { \
 33 static Tran_ t_; \
 34 QHsmTranStat_((QHsm *)me, &t_, (QState)(target_));\
 35 } else
 36 #define Q_TRAN_DYN(target_) \
 37 QHsmTran_((QHsm *)me, (QState)(target_))
 38 /* private methods */
 39 void QHsmTranSetup__(QHsm *me, Tran_ *t, QState target);
 40 END_CLASS

BEGIN_VTABLE(QHsm, Object) // explicit virtual table for QHsm class
 VMETHOD(Object, xtor) = (void (*)(Object *))QHsmXtor;
END_VTABLE

QHsm *QHsmCtor_(QHsm *me, QPseudoState initial) { // protected Ctor
 ObjectCtor_(&me->super); // construct superclass
 VHOOK(QHsm); // hook the VPTR for this class
 me->state__ = QHsm_top; // initialize attributes...

C Implementation 123
4.5.3 State Handler Methods and Pointer-to-Member

Functions

As described in Appendix A, a class in C corresponds to a C struct combined with
C functions that operate on this structure. Per “C+” convention, each class function
declares an explicit pointer to the associated structure as the first argument, me.
Therefore, in C, a pointer-to-member function is just a regular pointer to a function
that takes a pointer to the associated data structure as the first argument.

Lines 1 and 2 of Listing 4.13 can serve as examples. For instance, the
QPseudoState pointer to the QHsm member function is declared as follows.

Similarly, the QState pointer-to-member function is declared as follows.

As in the C++ case, the declaration of QState cannot be fully recursive (i.e., the
state handler cannot return a state handler [Sutter 01]); instead, the return type is
approximated by the QPseudoState pointer-to-member function.

4.5.4 QHsm Methods

Translation from C++ to “C+” for methods of a class is straightforward. You drop
the scope resolution operator :: and manually mangle the method name instead
(something a C++ compiler also does behind the scenes). You also emulate the
__this_call calling convention by providing the me pointer explicitly as the first

 me->source__ = (QState)initial;
 return me; // return success
}

void QHsmXtor_(QHsm *me) { // protected Xtor
 ObjectXtor_(&me->super); // destroy superclass
}

typedef void /* return type */
 (*QPseudoState) /* name of pointer-to-member */
 (struct QHsm *, /* class the function is a member of */
 QEvent const *); /* rest of the argument list */

typedef QPseudoState /* return type */
 (*QState) /* name of pointer-to-member */
 (struct QHsm *, /* class the function is a member of */
 QEvent const *); /* rest of the argument list */

124 Chapter 4: Implementing Behavioral Inheritance
argument. You use this pointer subsequently to access class attributes. The following
example of the QHsmDispatch() method illustrates all these elements.

The most interesting part of this method is the invocation of the state handler
(emphasized) based on the pointer-to-member function (*me->source__)(me, …)
followed by the cast of the return type (QPseudoState) to QState.

Exercise 4.13 Using QHsmDispatch() as a template, translate the rest of the QHsm class
methods from C++ to “C+.”

4.5.5 Statechart Example in C

As an example of a concrete state machine, I’ll implement the same statechart I
implemented in C++ (Figure 4.3) in “C+.” The HSM pattern is applied exactly as in
C++ by deriving the state model from the QHsm class. In the concrete subclass, you
declare all states as state handler methods. Finally, you define the state machine
behavior and topology (state nesting) by implementing the body of the state handler
methods.

Listing 4.14 Statechart from Figure 4.3 implemented in “C+”

void QHsmDispatch(QHsm *me, QEvent const *e) {
 for (me->source__ = me->state__; me->source__;
 me->source__ = (QState)(*me->source__)(me, e))
 {}
}

 1 #include "qhsm.h"
 2
 3 SUBCLASS(QHsmTst, QHsm)
 4 int foo__; /* private extended state variable */
 5 METHODS
 6 QHsmTst *QHsmTstCtor(QHsmTst *me);
 7
 8 void QHsmTst_initial(QHsmTst *me, QEvent const *e);
 9 QSTATE QHsmTst_s0(QHsmTst*me, QEvent const *e);
 10 QSTATE QHsmTst_s1(QHsmTst*me, QEvent const *e);
 11 QSTATE QHsmTst_s11(QHsmTst*me, QEvent const *e);
 12 QSTATE QHsmTst_s2(QHsmTst*me, QEvent const *e);
 13 QSTATE QHsmTst_s21(QHsmTst*me, QEvent const *e);
 14 QSTATE QHsmTst_s211(QHsmTst*me, QEvent const *e);
 15 END_CLASS
 16
 17 QHsmTst *QHsmTstCtor(QHsmTst *me) {

C Implementation 125
Listing 4.14 shows the most interesting implementation details. The state model
class (QHsmTst) is declared in lines 3 through 15. Please note that QHsmTst does not
declare a virtual table; therefore, it will not support polymorphism. Consequently,
there is no definition of VTABLE, and the constructor (lines 17–20) does not hook the
virtual pointer (inherited from QHsm). The only initialization that the
QHsmTstCtor() constructor performs is the invocation of the QHsmCtor() super-
class constructor in line 18. In lines 22 through 26 you see the definition of the ini-
tial pseudostate, whereas in lines 28 through 36 you see an example of a state
handler, which illustrates, among other things, how a state handler returns its super-
state (line 35). Finally, in the test harness, don’t forget to invoke the constructor (line
43) explicitly before initialization of the state machine (line 44). You dispatch events

 18 QHsmCtor_(&me->super_, (QPseudoState)QHsmTst_initial);
 19 return me;
 20 }
 21
 22 void QHsmTst_initial(QHsmTst *me) {
 23 printf("top-INIT;");
 24 me->foo__ = 0; /* initialize extended state variable */
 25 Q_INIT(QHsmTst_s0);
 26 }
 27
 28 QSTATE QHsmTst_s0(QHsmTst *me, QEvent const *e) {
 29 switch (e->sig) {
 30 case Q_ENTRY_SIG: printf("s0-ENTRY;"); return 0;
 31 case Q_EXIT_SIG: printf("s0-EXIT;"); return 0;
 32 case Q_INIT_SIG: printf("s0-INIT;"); Q_INIT(QHsmTst_s1); return 0;
 33 case E_SIG: printf("s0-E;"); Q_TRAN(QHsmTst_s211); return 0;
 34 }
 35 return (QSTATE)QHsm_top;
 36 }
 37 . . . /* other state handlers */
 38
 39 static QHsmTst test;
 40
 41 int main() {
 42 . . .
 43 QHsmTstCtor(&test, (QPseudoState)QHsmTst_initial);
 44 QHsmInit((QHsm *)&test, 0);
 45 for (;;) {
 46 . . . /* receive event */
 47 QHsmDispatch((QHsm *)&test, &e); /* dispatch event*/
 48 }
 49 . . .
 50 }

126 Chapter 4: Implementing Behavioral Inheritance
to the state machine in the usual way by calling QHsmDispatch(). Please note the
explicit type casting (upcasting) used when calling methods inherited from the QHsm
class on behalf of the QHsmTst object (lines 44 and 47).

Exercise 4.14 Implement in “C+” the rest of the state machine from Figure 4.3. Exe-
cute a test session as logged in Listing 4.7.

Exercise 4.15 Implement in “C+” the Quantum Calculator GUI application from
Chapter 1.

4.6 Caveats
The HSM implementation has a few pitfalls, which most often will cause contract
violations at run time (see the sidebar “Design by Contract in C/C++” on page 107)
but occasionally can lead to subtle bugs. In this section, I point out some malformed
HSMs that you could construct by instantiating the behavioral inheritance meta-pat-
tern incorrectly.

Perhaps the most far-reaching assumption of this HSM implementation is that
state machine topology is static (i.e., it does not change at run time). This assumption
corresponds roughly to statically defined class hierarchy in OOP and, in general pro-
gramming, to the assumption that code does not modify itself. Whereas normally,
state machine topology is indeed fully defined at compile time, some coding styles
could lead to unintentional modifications of the transition topology at run time.
Consider, for instance, the following state handler.

The MyHsm::stateA() state handler violates the assumption of static state tran-
sition because the target of the transition changes at run time. Looking into the
Q_TRAN() macro definition, you can see that only one static transition object gets
instantiated and that it cannot store two different transition chains. In this case, only

QState MyHsm::stateA(QEvent const *e) {
 switch (e->sig) {
 . . .
 case MYSIG1_SIG:
 Q_TRAN((...) ? (QState)stateB : (QState)stateC); // WRONG!!!
 return 0;
 . . .
 }
 return (QState)top;
}

Caveats 127
one transition chain is recorded in the transition object (targeting whichever state
happens to be picked by the condition evaluated the first time through). Subse-
quently, the condition (choice point) will have no effect. The correct way of coding
the choice point is to use two (or more) statically defined transitions as follows.

The assumption of static transition topology makes implementing the history
mechanism (available in UML statecharts) difficult. Consider the following attempt.

The idea here is to store the active substate (deep history) of stateA upon exit
and restore it in the initial transition. However, this solution makes the initial transi-
tion nonstatic (it changes at run time). Please note that you cannot introduce a choice
point here as before because choice points (or junctions for that matter) are not
allowed on initial transitions. Chapter 5 shows the correct way to implement transi-
tions to history as the History state pattern.

Another potential source of problems is confusing macros Q_INIT() and
Q_TRAN(). One could rightfully argue that a single macro (Q_TRAN()) should be suf-
ficient to implement all kinds of transitions, including initial transitions. Indeed, such
an implementation is possible, but not optimal. For one thing, using Q_TRAN() in

QState MyHsm::stateA(QEvent const *e) {
 switch (e->sig) {
 . . .
 case MYSIG1_SIG:
 if (...)
 Q_TRAN(stateB);
 else
 Q_TRAN(stateC);
 return 0;
 . . .
 }
 return (QState)top;
}

QState MyHsm::stateA(QEvent const *e) {
 switch (e->sig) {
 . . .
 case Q_EXIT_SIG:
 myHistoryA = getState(); // store the deep history of stateA
 return 0;
 case Q_INIT_SIG:
 Q_INIT(myHistoryA); // WRONG!!!
 return 0;
 . . .
 }
 return (QState)top;
}

128 Chapter 4: Implementing Behavioral Inheritance
initial transitions would lead to recursive invocation of the underlying QHsm::tran-
Stat() method (the transition chain includes drilling into the state hierarchy with
initial transitions) and would wastefully allocate static transition objects for initial
transitions. For that reason, Q_TRAN() is not designed to be used for initial transi-
tions and vice versa: Q_INIT() is inappropriate for general-purpose transitions. An
additional limitation of the Q_INIT() macro is that it can target only direct substates
of a given state. This restriction is asserted in the code and will be detected at run
time.

Finally, the implementation is vulnerable to mistakes in the state hierarchy specifi-
cation. For example, it is easy to introduce circular state hierarchies, which would
invariably crash the event processor. Consider the following malformed state handler.

4.7 Summary
So here it is: the optimized behavioral inheritance meta-pattern. Admittedly, it is only
a drastically simplified subset of UML state machines, but through its full support
for the profound concept of behavioral inheritance (state hierarchy), it forms the
foundation for adding other features.

The following bullet items quickly recapitulate how this implementation measures
up against the initial goals.
• It is simple to use and maintain. Defining HSMs requires subclassing the QHsm

class. Defining states corresponds to adding state handler methods to the derived
class, which you can do at any time, even late in the development process. State
handler methods are an inexpensive commodity, and there are no limits (except
for code space) on how many you can use.

• It allows changing state machine topology easily. In particular, no transition
chains must be coded manually. For instance, to change the target of a transition,
you modify the argument of the Q_TRAN() macro. Similarly, to change the super-
state of a given state, you modify the final return statement in the corresponding
state handler. All these changes are confined to one line of code.

• It provides good run-time efficiency and has a small memory footprint. Dispatch-
ing events to a state machine involves dereferencing a function pointer and is
comparable to the virtual function invocation in C++.21 The QHsm class adds only

QSTATE MyHsm::stateA(QEvent const *e) {
 switch (e->sig) {
 . . .
 }
 return (QSTATE)&MyHsm::stateA; // Oops! Circular dependency!
}

Summary 129
two pointers to the subclasses. Complete event processor code requires about
2KB of code space.

• It does not force you to pay for what you don’t use. For example, transitions to
history and event deferral typically impose memory and run-time overhead, even
if not used; therefore, they are not implemented at the fundamental level of the
behavioral inheritance meta-pattern. However, you can easily add these features
for specific states as state patterns (Chapter 5) and only pay for what you actually
use.
Please note that this HSM implementation provides only the event processor com-

ponent of a state machine, which processes dispatched event instances according to
the general semantics of UML state machines. The implementation intentionally
omits event queuing and event dispatching mechanisms, which are also necessary
components of a hypothetical state machine [OMG 01]. The goal of this implemen-
tation is to provide a generic event processor that can be used with any event queu-
ing and dispatching mechanism. This approach allows the behavioral inheritance
pattern to fit easily into existing event-driven environments that already support
event queuing and dispatching, most notably GUI frameworks (recall the Quantum
Calculator GUI application). In Part II of this book, I show you concrete ways in
which to implement event queuing and dispatching that is suitable for real-time
embedded applications.

21. Assuming that the event is handled in the lowest level of nesting, inheriting behavior from superstates requires
invocation of their sate-handler methods, which incurs some additional overhead.

130 Chapter 4: Implementing Behavioral Inheritance

5

Chapter 5

State Patterns

Science is a collection of successful recipes.
— Paul Valery (1871–1945)

In the previous chapter, you learned how to implement hierarchical state machines
(HSMs) in C++ and in C by instantiating the behavioral inheritance meta-pattern. In
fact, applying the pattern turned out to be a rather simple one-to-one mapping
between a state model and the code. With just a bit of practice, you will forget that
you are translating state models into code; rather, you will directly code state
machines in C or C++, just as you directly code classes in C++ or Java.

At this point, you will no longer struggle with convoluted if–then–else state-
ments and gazillions of flags. You will start thinking at a higher level of abstraction
about the best ways to partition behavior into states, about the events available at
any given time, and about the structure of your state machine.

However, coming up with a good structure for nontrivial state machines isn’t
easy. Experienced reactive-system designers know that a reusable and flexible state
machine design is difficult to get right the first time. Yet, experienced designers
repeatedly realize good state machines, whereas new designers are overwhelmed by
the options available and tend to fall back on convoluted if–then–else statements
and the multitude of flags they have used before.
131

132 Chapter 5: State Patterns
One thing that distinguishes an expert from a novice is the ability to recognize the
similarities among problems encountered in the past and to reuse proven solutions
that work. To share their expertise, OO designers began to catalog proven solutions
to recurring problems as OO design patterns [Gamma+ 95]. Similarly, state patterns
began to appear [Douglass 99]. In contrast to the OO patterns, which are concerned
with optimal ways of structuring classes and objects, the state patterns focus on
effective ways of structuring states, events, and transitions.

A state pattern has five essential elements, just as an OO pattern does.
1. The pattern name — a word or two denoting the problem, the solution, and the

consequences of a pattern. A good name is vital because it will become part of
your vocabulary.

2. The problem — an explanation of the problem the pattern addresses. A problem
is often motivated by an example.

3. The solution — a description of the elements (states, transitions, events, actions,
and extended state variables) that compose the solution and their relationships,
responsibilities, and collaborations.

4. The sample code — a presentation of a concrete implementation of an instance
of the pattern. Usually the sample code implements the motivating example.

5. The consequences — the results and trade-offs of applying the pattern.
In this chapter, I provide a minicatalog of five basic state patterns (Table 5.1). The

first two are relatively simple state machine solutions to common problems. The
other three are just more advanced or expensive features that are found in UML stat-
echarts but are not supported directly in the behavioral inheritance meta-pattern.
The leading theme of all these patterns is reusing behavior through behavioral inher-
itance, in contrast to the state patterns described in the book Doing Hard Time, by
Bruce Powel Douglass [Douglass 99] that all revolve around orthogonal regions. The
other distinguishing aspect of the state patterns presented here is that all are illus-
trated by concrete, executable code. A state diagram alone is not enough to under-
stand a state pattern because the devil is always in the detail. To be practical, a
pattern must be accompanied by a concrete working example that will help you truly
comprehend and evaluate the pattern and give you a good starting point for your
own instantiation of the pattern.

Many examples in this chapter are implemented as Windows GUI applications
because the behavioral inheritance meta-pattern provides only the event processor
and lacks the other essential components of a typical event-driven system, such as
event queuing. As a reactive system, Windows provides those missing elements.
However, the patterns are not at all Windows- or GUI-specific. In particular, they all
can be used in conjunction with any other infrastructure to execute a state machine
(e.g., the Quantum Framework discussed in Part II of this book).

Ultimate Hook 133
Table 5.1 State patterns covered in this chapter

None of the state patterns described in this chapter captures new or unproven
state machine designs. In fact, by definition, a state pattern is a proven solution to a
recurring problem that is actually used in successful, real-life reactive systems. How-
ever, most of the basic state patterns have never been documented before (at least not
with such a level of detail and illustrated with executable code). They are either part
of the folklore of various programming communities (e.g., the GUI community or
the embedded systems community) or are elements of some successful reactive sys-
tems, neither of which is easy for novice designers to learn from. So although these
state designs are not new, they are offered here in a new and more accessible way.

5.1 Ultimate Hook

5.1.1 Intent

Provide common facilities and policies for handling events but let clients override
and specialize every aspect of a system’s behavior.

5.1.2 Problem

Many reactive systems require consistent policies for handling events. In a GUI
design, this consistency is part of the characteristic look and feel of the user interface.
The challenge is to provide such a common look and feel in system-level software
that client applications can use easily as the default. At the same time, the clients
must be able to override every aspect of the default behavior easily if they so choose.

Pattern Name Intent

Ultimate Hook
(Section 5.1)

Provide a common look and feel, but let clients
specialize every aspect of a system’s behavior.

Reminder
(Section 5.2)

Invent an event and post it to self.

Deferred Event
(Section 5.3)

Control the sequence of events.

Orthogonal Component
(Section 5.4)

Use state machines as components.

Transition to History
(Section 5.5)

Transition to the most recent state configura-
tion of a given composite state.

134 Chapter 5: State Patterns
5.1.3 Solution

The solution is to apply programming-by-difference or, specifically in this case, the
concept of behavioral inheritance. A composite state can define the default behavior
(the common look and feel) and supply an “outer shell” for nesting client substates.
The semantics of state nesting provides the desired mechanism of handling all events,
first in the context of the client code (the nested state) and of automatically forward-
ing all unhandled events to the superstate (the default behavior). In that way, the cli-
ent code intercepts every stimulus and can override every aspect of the behavior. To
reuse the default behavior, the client simply ignores the event and lets the superstate
handle it (the substate inherits behavior from the superstate).

Figure 5.1 The Ultimate Hook state pattern

Figure 5.1 shows the Ultimate Hook state pattern using a basic graphical notation
adapted from Douglass [Douglass 99]. The dashed oval labeled «state pattern» indi-
cates collaboration among states. Dashed arrows emanating from the oval indicate
state roles within the pattern. States playing these roles are shown with heavy bor-
ders. For example, the concrete generic state plays the role of the generic superstate
of the pattern, whereas the specific state plays the role of the specific substate.

A diagram like this attempts to convey an abstract pattern but can only show a
concrete example (instance) of the pattern. In this instance, the concrete generic
state in Figure 5.1 handles events A and B as internal transitions, event C as a self-
transition, and event D as the termination of the state machine. The concrete spe-
cific state overrides event A and provides its own initialization and cleanup (in
entry and exit actions, respectively). Of course, another instance of the pattern can
implement completely different events and actions.

A few idioms worth noting are illustrated in this statechart. First is the overall
canonical structure of the state machine that, at the highest level, consists of only one
composite state (playing the role of the generic superstate). Virtually every applica-
tion can benefit from having such a highest level state because it is an ideal place for
defining common policies subsequently inherited by the whole (arbitrary complex)
submachine.

A/
B/

generic

entry/
exit/
A/

specific«state pattern»
Ultimate Hook

C

D

generic
superstate

specific
substate entry/terminate();

final

reset
(idiom)

explicit
final state
(idiom)

Ultimate Hook 135
Note: As described in Section 2.2.1 in Chapter 2, every UML state machine is a
submachine of an implicit top state and so has the canonical structure pro-
posed here. However, because you cannot override the top state, you need
another highest level state that you can customize.

Within such a canonical structure, a useful idiom for resetting the state machine is
an empty (actionless) self-transition in the generic superstate (transition C in Figure
5.1). Such a transition causes a recursive exit from all nested states (including the
generic superstate), followed by reinitialization starting from the initial transition of
the highest level state. This way of resetting a state machine is perhaps the safest
because it guarantees proper clean-up through the execution of exit actions. Simi-
larly, the safest way to terminate a state machine is through an explicit transition out
of the generic superstate to a final state (transition D in Figure 5.1) because all per-
tinent exit actions are executed. The behavioral inheritance meta-pattern does not
provide a generic final state. Instead, the statechart in Figure 5.1 proposes an
idiom, which consists of an explicit final state with an application-specific termina-
tion coded in its entry action.1

5.1.4 Sample Code

Listing 5.1 illustrates an implementation of the statechart from Figure 5.1. Lines 1
through 3 declare the signals A through D. The UltimateHook state machine is
derived from QHsm in lines 5 through 13. It has three state handlers: generic(),
specific(), and final(). The rest of the listing defines the state handler methods.
Note, for example, the implementation of the reset self-transition in line 32, the ter-
mination transition in line 35, and the signal A override in the Ultimate-
Hook::specific() state handler in line 45.

Listing 5.1 Ultimate Hook sample code; the unusual indentation of state handler

methods (lines 10–12) indicates state nesting

1. The Quantum Calculator statechart from Chapter 1 is an example of the canonical state machine structure that
uses idioms to reset and terminate.

 1 enum UltimateHookSignals { // declaration of signals
 2 A_SIG = Q_USER_SIG, B_SIG, C_SIG, D_SIG, MAX_SIG
 3 };
 4
 5 class UltimateHook : public QHsm { // "Ultimate Hook" statechart
 6 public:
 7 UltimateHook() : QHsm((QPseudoState)initial) {} // ctor
 8 private:

136 Chapter 5: State Patterns
One option of deploying the Ultimate Hook pattern is to organize the code into
a library that intentionally does not contain the implementation of the
UlimtateHook::specific() state handler. Clients would then have to provide
their own implementation and link to the library to obtain the generic behavior. An
example of a design using this technique is Microsoft Windows, which requires the
client code to define WinMain() for the Windows application to link.

 9 void initial(QEvent const *e); // initial pseudostate-handler
 10 QSTATE generic(QEvent const *e); // state-handler
 11 QSTATE specific(QEvent const *e); // state-handler
 12 QSTATE final(QEvent const *e); // state-handler
 13 };
 14
 15 void UltimateHook::initial(QEvent const *) {
 16 Q_INIT(&UltimateHook::generic);
 17 }
 18 QSTATE UltimateHook::final(QEvent const *e) {
 19 switch (e->sig) {
 10 case Q_ENTRY_SIG: exit(0); return 0; // terminate the application
 21 }
 22 return (QSTATE)&UltimateHook::top;
 23 }
 24
 25 QSTATE UltimateHook::generic(QEvent const *e) {
 26 switch (e->sig) {
 27 case Q_INIT_SIG: Q_INIT(specific); return 0;
 28 case A_SIG: printf("generic:A;"); return 0;
 29 case B_SIG: printf("generic:B;"); return 0;
 30 case C_SIG:
 31 printf("generic:C;");
 32 Q_TRAN(&UltimateHook::generic); // self transition
 33 return 0;
 34 case D_SIG:
 35 Q_TRAN(&UltimateHook::final); // explicit transition to "final"
 36 return 0;
 37 }
 38 return (QSTATE)&UltimateHook::top;
 39 }
 40
 41 QSTATE UltimateHook::specific(QEvent const *e) {
 42 switch (e->sig) {
 43 case Q_ENTRY_SIG: printf("specific:entry;"); return 0;
 44 case Q_EXIT_SIG: printf("specific:exit;"); return 0;
 45 case A_SIG: printf("specific:A;"); return 0;
 46 }
 47 return (QSTATE)&UltimateHook::generic;
 48 }

Ultimate Hook 137
Another option is to declare the UlimtateHook::specific() state handler as
an abstract method (a pure virtual function in C++) and force clients to provide
implementation for this state handler by subclassing the UltimateHook class. This
approach combines behavioral inheritance with traditional class inheritance. More
precisely, Ultimate Hook represents, in this case, a special instance of the Template
Method OO design pattern (refer to Section 6.3.3 in Chapter 6).

Exercise 5.1 Reimplement in C the Ultimate Hook state pattern from Listing 5.1.
Hint: Appendix A describes the techniques for realizing classes and
inheritance in C, and Section 4.5 of Chapter 4 provides specific guide-
lines for instantiating the behavioral inheritance meta-pattern in C.

5.1.5 Consequences

The Ultimate Hook state pattern is presented here in its most limited version —
exactly as it is used in GUI systems (e.g., Microsoft Windows). In particular, nei-
ther the generic superstate nor the specific substate exhibits any interesting state
machine topology. The only significant feature is behavioral inheritance (state
nesting), which can be applied recursively within the specific substate. For
example, at any level, a GUI window can have nested child windows, which
handle events before the parent.

Even in this most limited version, however, the Ultimate Hook state pattern is
a fundamental technique for reusing behavior. In fact, every state model using
the canonical structure implicitly applies this pattern.

The Ultimate Hook state pattern has the following consequences.
• The specific substate needs to know only those events it overrides.
• New events can be added easily to the top-level generic superstate with-

out affecting the specific substate.
• Removing or changing the semantics of events that clients already use is

difficult.
• Propagating every event through many levels of nesting (if the specific

substate has recursively nested substates) can be expensive.
The Ultimate Hook state pattern is closely related to the Template Method

OO design pattern and can be generalized by applying unrestricted inheritance
of state machines (see Chapter 6).

138 Chapter 5: State Patterns
5.2 Reminder

5.2.1 Intent

Make the statechart topology more flexible by inventing an event and posting it to self.

5.2.2 Problem

Often in state modeling, loosely related functions of a system are strongly cou-
pled by a common event. Consider, for example, periodic data acquisition, in
which a sensor producing the data needs to be polled at a predetermined rate.
Assume that a periodic TIMEOUT event is dispatched to the system at the desired
rate to provide the stimulus for polling the sensor. Because the system has only
one external event (the TIMEOUT event), it seems that this event needs to trigger
both the polling of the sensor and the processing of the data. A straightforward
but suboptimal solution is to organize the state machine into two distinct orthogo-
nal regions (for polling and processing).2 However, orthogonal regions increase the
cost of dispatching events (see the section “Orthogonal Component” on page 149)
and require complex synchronization between the regions (polling and processing
are not quite orthogonal).

5.2.3 Solution

A simpler and more efficient solution is to invent a stimulus (DATA_READY) and to
propagate it to self as a reminder that the data is ready for processing (Figure 5.2).
This new stimulus provides a way to decouple polling from processing without using
orthogonal regions. Moreover, you can use state nesting to arrange these two func-
tions in a hierarchical relation to take advantage of behavioral inheritance.3

In the most basic arrangement, the processing state can be a substate of
polling and can simply inherit the polling behavior so that polling occurs in
the background to processing. However, the processing state might also choose
to override polling. For instance, to prevent flooding the CPU with sensor data,
processing might inhibit polling occasionally. The statechart in Figure 5.2 illus-
trates this option. The busy substate of processing overrides the TIMEOUT event
and thus prevents this event from being handled in the higher level polling super-
state.

Further flexibility of this solution entails fine control over the generation of
the invented DATA_READY event, which does not have to be posted at every occur-
rence of the original TIMEOUT event. For example, to improve performance, the

2. This example illustrates an alternative design for the Polling state pattern described in Douglass [Douglass 99].
3. Using state hierarchy in this fashion is typically more efficient than using orthogonal regions.

Reminder 139
polling state could buffer the raw sensor data and generate the DATA_READY
event only when the buffer fills up, Figure 5.2 illustrates this option with the if (…)
condition, which precedes the post(DATA_READY) action in the polling state.

Figure 5.2 The Reminder state pattern

5.2.4 Sample Code

The statechart in Figure 5.2 posts a reminder to self using post(). This operation
involves queuing an event and is not supported by the raw event processor of the
behavioral inheritance meta-pattern. However, such an operation is available in vir-
tually every event-driven environment.4 For instance, Windows GUI applications can
call the PostMessage() Win32 API to queue a message to self.

Listing 5.2 shows an implementation of the statechart from Figure 5.2 as a Win-
dows GUI application. The initial transition (Listing 5.2, lines 23–29) enters the
polling state, which in turn enters the idle substate. Because neither the idle state
nor the processing state handle the WM_TIMER signal, the signal is handled initially
in the polling superstate (lines 38–55). However, every fourth clock tick, the poll-
ing state generates the DATA_READY signal and posts it to self (line 46). This signal
causes a transition from idle to busy (line 67). In contrast to the idle state, the
busy state overrides the WM_TIMER signal. After two clock ticks (line 78), busy tran-
sitions back to idle (line 79), and the cycle repeats.

processing
«state pattern»

Reminder

idle
TIMEOUT[...]/
 /*ignore */

busy

TIMEOUT/pollSensor();
 if (...) post(DATA_READY)

polling

DATA_READY

TIMEOUT[...]
mutually
exclusive
guards

Post a
reminder
to self

Use the
posted
reminder

4. In Part II of this book, I describe a Quantum Framework that supports self-posting of events.

140 Chapter 5: State Patterns
Listing 5.2 Reminder sample code

 1 enum SensorSignals {
 2 DATA_READY = Q_USER_SIG, TERMINATE
 3 };
 4 class Sensor : public QHsm {
 5 public:
 6 Sensor() : QHsm((QPseudoState)initial) {}
 7 private:
 8 void initial(QEvent const *e);
 9 QSTATE polling(QEvent const *e);
 10 QSTATE processing(QEvent const *e);
 11 QSTATE idle(QEvent const *e);
 12 QSTATE busy(QEvent const *e);
 13 QSTATE final(QEvent const *e);
 14 private:
 15 int myPollCtr;
 16 int myProcCtr;
 17 BOOL isHandled; // flag indicating if the last event was handled
 18 HWND myHwnd; // the main window handle
 19 friend BOOL CALLBACK reminderDlg(HWND hwnd, UINT iEvt,
 20 WPARAM wParam, LPARAM lParam);
 21 };
 22
 23 void Sensor::initial(QEvent const *) {
 24 SendMessage(myHwnd, WM_SETICON, (WPARAM)TRUE,
 25 (LPARAM)LoadIcon(inst, MAKEINTRESOURCE(IDI_QP)));
 26 myPollCtr = 0;
 27 myProcCtr = 0;
 28 Q_INIT(&Sensor::polling);
 29 }
 30 QSTATE Sensor::final(QEvent const *e) {
 31 switch (e->sig) {
 32 case Q_ENTRY_SIG:
 33 EndDialog(myHwnd, 0);
 34 return 0;
 35 }
 36 return (QSTATE)&Sensor::top;
 37 }
 38 QSTATE Sensor::polling(QEvent const *e) {
 39 switch (e->sig) {
 40 case Q_ENTRY_SIG: SetTimer(myHwnd, 1, 500, 0); return 0;
 41 case Q_EXIT_SIG: KillTimer(myHwnd, 1); return 0;
 42 case Q_INIT_SIG: Q_INIT(&Sensor::processing); return 0;
 43 case WM_TIMER:
 44 SetDlgItemInt(myHwnd, IDC_POLL, ++myPollCtr, FALSE);
 45 if ((myPollCtr & 0x3) == 0){
 46 PostMessage(myHwnd, WM_COMMAND, DATA_READY, 0);

Reminder 141
The simple GUI for this application (Figure 5.3) displays the currently active
state (busy or idle), as well as the number of times WM_TIMER has been handled in
polling and processing, respectively.

 47 }
 48 return 0;
 49 case TERMINATE: Q_TRAN(&Sensor::final); return 0;
 50 }
 51 if (e->sig >= Q_USER_SIG) {
 52 isHandled = FALSE;
 53 }
 54 return (QSTATE)&Sensor::top;
 55 }
 56 QSTATE Sensor::processing(QEvent const *e) {
 57 switch (e->sig) {
 58 case Q_INIT_SIG: Q_INIT(&Sensor::idle); return 0;
 59 }
 60 return (QSTATE)&Sensor::polling;
 61 }
 62 QSTATE Sensor::idle(QEvent const *e) {
 63 switch (e->sig) {
 64 case Q_ENTRY_SIG:
 65 SetDlgItemText(myHwnd, IDC_STATE, "idle");
 66 return 0;
 67 case DATA_READY: Q_TRAN(&Sensor::busy); return 0;
 68 }
 69 return (QSTATE)&Sensor::processing;
 70 }
 71 QSTATE Sensor::busy(QEvent const *e) {
 72 switch (e->sig) {
 73 case Q_ENTRY_SIG:
 74 SetDlgItemText(myHwnd, IDC_STATE, "busy");
 75 return 0;
 76 case WM_TIMER:
 77 SetDlgItemInt(myHwnd, IDC_PROC, ++myProcCtr, FALSE);
 78 if ((myProcCtr & 0x1) == 0) {
 79 Q_TRAN(&Sensor::idle);
 80 }
 81 return 0;
 82 }
 83 return (QSTATE)&Sensor::processing;
 84 }

142 Chapter 5: State Patterns
Figure 5.3 Reminder sample application GUI

Exercise 5.2 Find the Reminder state pattern implementation on the accompanying
CD-ROM and execute it. Next, change the polling state to generate
DATA_READY every eighth, instead of every fourth, clock tick. Recompile
and execute again.

Exercise 5.3 Reimplement in C the Reminder state pattern from Listing 5.2. Hint:
Appendix A describes the techniques for realizing classes and inheritance
in C, and Section 4.5 of Chapter 4 provides specific guidelines for instan-
tiating the behavioral inheritance meta-pattern in C.

5.2.5 Consequences

Although conceptually very simple, the Reminder state pattern has profound conse-
quences. It can address many more problems than illustrated in the example. You
could use it as a Swiss Army knife to fix almost any problem in the state machine
topology.

For example, consider the artificial limitation of the behavioral inheritance imple-
mentation (Section 4.2.1 in Chapter 4), which restricts the initial transition from tar-
geting substates nested deeper than one level5 (as in Figure 5.4a). The equivalent
cascaded initial transitions (as in Figure 5.4b) are sometimes inconvenient because a
composite state with the initial transition can never become active without one of its
substates being active (see Section 4.3.3 in Chapter 4). Reminder enables you to
change the topology of the state machine and replace the initial transition with a
regular one triggered by an invented signal, INIT, posted in the higher level initial
transition (as in Figure 5.4c).

You also can apply the Reminder idiom to eliminate troublesome completion
transitions, which in the UML specification are transitions without an explicit trigger
(they are triggered implicitly by completion events, aka anonymous events). The
behavioral inheritance meta-pattern requires that all transitions have explicit trig-

5. This example is inspired by a suggestion from Paul Montgomery.

Reminder 143
gers; therefore, the pattern does not support completion transitions. However, the
Reminder pattern offers a workaround. You can invent an explicit trigger for every
transition and post it to self. This approach actually gives you much better control
over the behavior because you can explicitly specify the completion criteria.

Figure 5.4 (a) An initial transition penetrating two levels of nesting (not allowed

in the behavioral inheritance meta-pattern); (b) the equivalent nested

initial transitions; (c) elimination of the innermost initial transition

through the Reminder pattern (the ^INIT action indicates the INIT

event propagates to self)

Yet another important application of the Reminder pattern is to break up longer
RTC steps into shorter ones. As explained in more detail in Chapter 10, long RTC
steps exacerbate the responsiveness of a state machine and put more stress on event
queues. The Reminder pattern can help you break up CPU-intensive processing (e.g.,
iteration) by inventing a stimulus for continuation in the same way that you stick a
Post-it®6 note to your computer monitor to remind you where you left off on some
lengthy task when someone interrupts you. You can also invent event parameters to
convey the context, which will allow the next step to pick up where the previous step
left off. The advantage of fragmenting lengthy processing in such a way is so that
other (perhaps more urgent) events can “sneak in” allowing the state machine to
handle them in a more timely way.

You have essentially two alternatives when implementing event posting: the first
in, first out (FIFO) or the last in, first out (LIFO) policy. The FIFO policy is appropri-
ate for breaking up longer RTC steps. You want to queue the reminder event after
other events that have potentially accumulated while the state machine was busy, to
give the other events a chance to sneak in ahead of the reminder. However, in other
circumstances, you might want to process an uninterruptible sequence of posted
events (such a sequence effectively forms an extended RTC step7). In this case, you
need the LIFO policy, because a reminder posted with that policy is guaranteed to be
the next event to process and no other event can overtake it.8

s1

/^INIT(a) (c)

s11 s12

s1

s11 s12

INIT

s1

(b)

s11 s12

6. Post-it is a trademark of 3M, Inc.
7. For example, state-based exception handling (see Chapters 3 and 8) typically requires immediate handling of

exceptional situation, so you don’t want other events to overtake the EXCEPTION event.

144 Chapter 5: State Patterns
5.3 Deferred Event

5.3.1 Intent

Simplify state machines by modifying the sequencing of events.

5.3.2 Problem

One of the biggest challenges in designing reactive systems is that such systems
must be prepared to handle every event at any time. However, sometimes an
event arrives at a particularly inconvenient moment when the system is in the
midst of some complex event sequence. In many cases, the nature of the event is
such that it can be postponed (within limits) until the system is finished with the
current sequence, at which time the event can be recalled and conveniently pro-
cessed.

Consider, for example, the case of a server application that processes trans-
actions (e.g., from ATM terminals). Once a transaction starts, it typically goes
through a sequence of processing, which commences with receiving the data from
a remote terminal followed by the authorization of the transaction. Unfortu-
nately, new transaction requests to the server arrive at random times, so it is pos-
sible to get a request while the server is still busy processing the previous
transaction. One option is to ignore the request, but this might not be acceptable.
Another option is to start processing the new transaction immediately, which can
complicate things immensely because multiple outstanding transactions would
need to be handled simultaneously.

5.3.3 Solution

The solution is to defer the new request and handle it at a more convenient time,
which effectively leads to altering the sequence of events presented to the state
machine.

UML statecharts support such a mechanism directly by allowing every state to
specify a list of deferred events. As long as an event is on the combined deferred
list of the currently active state configuration, it is not presented to the state
machine but, rather, queued for later processing. Upon a state transition, events that
are no longer deferred are automatically recalled and dispatched to the state
machine. Figure 5.5 illustrates a solution based on this mechanism (note the special
defer operator in the NEW_REQUEST internal transition in the busy state).

8. The Quantum Framework (described in Part II of this book) supports FIFO and LIFO policies through the
postFIFO() and postLIFO() methods, respectively.

Deferred Event 145
Note: State nesting immensely complicates event deferral because deferred lists
of all nested states of the current state configuration contribute to the
mechanism.

Figure 5.5 Event deferral using the built-in UML mechanism

Naturally, the lightweight behavioral inheritance meta-pattern implementa-
tion does not support the powerful, but heavyweight, event deferral mechanism of
the UML specification. However, you can achieve similar functionality by defer-
ring and recalling events explicitly. Figure 5.6 shows how to integrate these opera-
tions into a statechart to achieve the desired effect. The internal transition
NEW_REQUEST in the highest level state operational traps any transaction
request received in either the receiving or authorizing states. This internal
transition triggers the invocation of defer() (a member of the TServer class) to
postpone the event. The idle substate of the operational superstate overrides
the high-level transition NEW_REQUEST with a regular transition (in state idle,
event NEW_REQUEST is no longer deferred). Additionally, the entry action to idle
invokes recall(), which posts the first of the deferred events (if present) to the state
machine.

receiving

idle

NEW_REQUEST / defer
busy

AUTHORIZED

authorizing

RECEIVED

defer operator
TERMINATE

NEW_REQUEST

Figure 5.6 Deferred Event state pattern

receiving
NEW_REQUEST/defer()

operational

AUTHORIZED

recalling
state

deferring
state

authorizing

RECEIVED

NEW_REQUEST

TERMINATE
defer()
recall()

myDeferredList

TServer

«class role»

«state pattern»
Deferred Event

entry/recall()

idle

146 Chapter 5: State Patterns
5.3.4 Sample Code

The sample code is a Windows GUI application because recalling deferred events
involves posting them to self, which in Windows can be done with a PostMessage()
Windows API call.

Figure 5.7 shows the simple GUI of this application. As usual, you see the current
state in the top row. A check box below indicates whether any request has been
deferred. The button at the bottom serves to place a request for a new transaction.
You can click this button at any time, including when the system is busy processing
your previous transactions.

Figure 5.7 Deferred Event sample application GUI

Listing 5.3 Abbreviated Deferred Event sample code

 1 class TServer : public QHsm {
 2 public:
 3 TServer() : QHsm((QPseudoState)initial) {}
 4 private:
 5 void initial(QEvent const *e); // initial pseudostate
 6 QSTATE operational(QEvent const *e); // state-handler
 7 QSTATE idle(QEvent const *e); // state-handler
 8 QSTATE receiving(QEvent const *e); // state-handler
 9 QSTATE authorizing(QEvent const *e); // state-handler
 10 QSTATE final(QEvent const *e); // state-handler
 11
 12 BOOL defer(QEvent const *e); // defer an event
 13 void recall(); // recall first deferred event
 14 private:
 15 QEvent myDeferredRequest; // just one deferred request
 16 BOOL isHandled; // flag indicating if the last event was handled
 17 HWND myHwnd; // the main window handle
 18 friend BOOL CALLBACK DlgProc(HWND hwnd, UINT iEvt,
 19 WPARAM wParam, LPARAM lParam);
 20 };
 21 BOOL TServer::defer(QEvent const *e) {
 22 if (IsDlgButtonChecked(myHwnd, IDC_DEFERRED)) { // deferred?
 23 return FALSE; // cannot defer any more events
 24 }

Deferred Event 147
For simplicity, the implementation shown in Listing 5.3 allows only one deferred
event (stored in the myDeferredRequest attribute). In a real application, you might
want to replace this attribute with a queue to store more events. However, this is a
detail that does not affect the code beyond the concrete implementation of defer()
and recall(), shown in lines 21 through 28 and 29 through 34, respectively. Note

 25 myDeferredRequest = *e; // save the event (copy by value)
 26 CheckDlgButton(myHwnd, IDC_DEFERRED, BST_CHECKED); // deferred
 27 return TRUE;
 28 }
 29 void TServer::recall() {
 30 if (IsDlgButtonChecked(myHwnd, IDC_DEFERRED)) { // deferred?
 31 PostMessage(myHwnd, WM_COMMAND, myDeferredRequest.sig, 0);
 32 CheckDlgButton(myHwnd, IDC_DEFERRED, BST_UNCHECKED);
 33 }
 34 }
 35
 36 void TServer::initial(QEvent const *) {
 37 Q_INIT(&TServer::operational);
 38 }
 39 QSTATE TServer::operational(QEvent const *e) {
 40 switch (e->sig) {
 41 . . .
 42 case NEW_REQUEST_SIG:
 43 if (!defer(e)) { // cannot defer the event?
 44 Beep(1000, 20); // warn the user
 45 }
 46 return 0;
 47 }
 48 . . .
 49 return (QSTATE)&TServer::top;
 50 }
 51 QSTATE TServer::idle(QEvent const *e) {
 52 switch (e->sig) {
 53 case Q_ENTRY_SIG:
 54 SetDlgItemText(myHwnd, IDC_STATE, "idle");
 55 recall(); // recall first deferred event (if any)
 56 return 0;
 57 case NEW_REQUEST_SIG: // override the NEW_REQUEST signal
 58 Q_TRAN(&TServer::receiving);
 59 return 0;
 60 }
 61 return (QSTATE)&TServer::operational;
 62 }
 63 QSTATE TServer::receiving(QEvent const *e) { . . . }
 64 QSTATE TServer::authorizing(QEvent const *e) { . . . }

148 Chapter 5: State Patterns
that defer() must copy the event into local storage, as opposed to storing only the
event pointer (line 25). An event instance passed to a state handler is typically
destroyed (or goes out of scope) after dispatching. Also, no matter how big you make
the deferred event queue, there is always a possibility of overflowing it; therefore,
defer() should return the status of the deferral to the caller. This application gener-
ates a warning beep when deferring an event fails (line 44).

The application simulates processing delays in states receiving and
authorizing with a Windows timer. A timer is created on entry to either state
and then destroyed on exit. This example demonstrates how you can use entry
and exit actions for guaranteed initialization and cleanup (you don’t want to
leak a Windows timer!).

Exercise 5.4 Find the Deferred Event state pattern implementation on the accompany-
ing CD-ROM and execute it. Next, set a breakpoint in the exit action
from the authorizing state. Start the application, issue the new request,
wait until servicing proceeds to the authorizing state, and terminate the
application before it transitions back to the idle state. Verify that the exit
action from authorizing is executed (and thus the timer is not leaked).

The sample application in Listing 5.3 defers only one type of event:
NEW_REQUEST. However, you can easily extend the pattern to defer any number of
events. For instance, it might be inappropriate to terminate TServer while it is
still processing a transaction; therefore, you can defer the TERMINATE event until
the server is idle. To distinguish between deferring and recalling NEW_REQUEST
and deferring TERMINATE, you need to create another pair of methods, say
deferTerminate() and recallTerminate(), as well as a separate attribute in
which to store the instances of the TERMINATE event type (Exercise 5.6).

Exercise 5.5 Reimplement in C the Deferred Event pattern from Listing 5.3. Hint:
Appendix A describes the techniques for realizing classes and inheritance
in C, and Section 4.5 of Chapter 4 provides specific guidelines for instan-
tiating the behavioral inheritance meta-pattern in C.

Exercise 5.6 Add deferring the TERMINATE signal to the TServer statechart from List-
ing 5.3 as described in the previous paragraph. Devise and execute a test
plan for the new feature.

Orthogonal Component 149
5.3.5 Consequences

Event deferral is a valuable technique for simplifying state models. Instead of
constructing an unduly complex state machine to handle every event at any time,
you can defer an event when it comes at an inappropriate or awkward time. The
event is recalled when the state machine is better able to handle it. The Deferred
Event state pattern is a lightweight alternative to the powerful but heavyweight
event deferral of UML statecharts. The Deferred Event state pattern has the fol-
lowing consequences.
• It requires explicit deferring and recalling of the deferred events.
• Concrete state machines (subclasses of QHsm), rather than the event processor,

are responsible for storing deferred events and for implementing defer() and
recall().

• If a state machine defers more than one event type, it might be appropriate to
implement a separate queue for each type, as well as a specific defer???()
and recall???() pair for deferring and recalling specific events, respec-
tively.

• Events are usually deferred in a high-level transition (often an internal tran-
sition). Conversely, events are typically recalled in an entry action to a low-
level state (the state that no longer defers a given event type).

• Recalling an event involves posting it to self; however, unlike deferred events
in the Reminder pattern, they are usually external rather than invented.
The real-time object-oriented modeling (ROOM) method [Selic+ 94] supports

a variation of the Deferred Event pattern presented here. The ROOM virtual
machine (infrastructure for executing ROOM models) provides the generic
methods defer() and recall(), which clients need to call explicitly. The vir-
tual machine, however, takes care of event queuing. Methods defer() and
recall() in ROOM are not specific to an event type but, rather, to the interface
component through which an event was received.

5.4 Orthogonal Component

5.4.1 Intent

Use state machines as components.

5.4.2 Problem

Many objects comprise relatively independent parts that have state behavior. As
an example, consider a simple digital alarm clock. The clock performs two

150 Chapter 5: State Patterns
largely independent functions: a basic timekeeping function and an alarm function.
Each of these functions has its own modes of operation. For example, timekeeping
can be in two modes: 12-hour or 24-hour. Similarly, an alarm can be either on or off.

One way of modeling such behavior in UML statecharts is to place each of the
loosely related functions in a separate orthogonal region, as shown in Figure 5.8.
However, orthogonal regions are a relatively heavyweight mechanism that the cur-
rent implementation of the behavioral inheritance meta-pattern does not support.
More importantly, orthogonal regions aren’t often the desired solution because they
offer little opportunity for reuse. You cannot reuse the Alarm orthogonal region eas-
ily outside the context of the AlarmClock statechart.

Figure 5.8 AlarmClock class and its UML statechart with orthogonal regions

5.4.3 Solution

The solution is to use object composition instead of orthogonal regions. In the case
of the alarm clock, the alarm function can be included as a separate Alarm com-
ponent embedded inside the timekeeping container object, as shown in Figure 5.9.
This solution is based on the universal OO guideline that it is best to construct
classes out of high-level components, as opposed to low-level built-in types [Horst-
mann 95]. If the alarm function of the AlarmClock class is so independent that it
warrants separation into a distinct orthogonal region, it probably is a component of
the AlarmClock class. Indeed, as shown at the top of Figure 5.9, the alarm function
very naturally maps to the Alarm class that has both data (myAlarmTime) and
behavior (a state machine). Rumbaugh and colleagues [Rumbaugh+ 91] observe that
this is a general rule. Concurrency virtually always arises within objects by aggrega-
tion; that is, multiple states of the components can contribute to a single state of the
composite object.

The use of aggregation in conjunction with state machines raises three ques-
tions.
1. How does the container state machine communicate with the component state

machines?

TERMINATE

12H

24H

ON

OFF

timekeeping alarm

TICK/

mode12h

TICK/

mode24h

TICK/

on

off

myCurrentTime : int
myAlarmTime : int

AlarmClock

«class role»

Orthogonal Component 151
2. How do the component state machines communicate with the container state
machine?

3. What kind of concurrency model should be used?

Figure 5.9 Orthogonal Component state pattern; the pattern partitions state

behavior as well as extended state variables, as indicated by the class

roles at the top of the diagram

The composite object interacts with its aggregate parts by synchronously dis-
patching events to them (by invoking dispatch() on behalf of the components).
GUI systems frequently use this model because it is how parent windows commu-
nicate with their child windows (e.g., dialog controls). Although, in principle,
the container could invoke various methods of its components or access their data
directly, dispatching events to the components should be the preferred way of
communication. The components are state machines, and their behavior
depends on their internal state.

To communicate in the opposite direction (from a component to the container),
a component needs to post events to the container. Note that a child cannot call
dispatch() on behalf of the parent because it would violate RTC semantics. As
a rule, the parent is always in the middle of its RTC step when a child executes.
Therefore, children need to asynchronously post (queue) events to the parent.

Note: The parent dispatches events synchronously (without queuing them) to
the children, but the children must post events asynchronously (by queu-
ing them) to the parent.

TERMINATE

12H

24H

ONOFF

timekeeping

TICK/

mode12h

TICK/

mode24h

TIME/

on

off

myCurrentTime : int
myAlarm : Alarm

AlarmClock

myAlarmTime

Alarm

QHsm QFsm

myAlarm 1

Container
Component«class role»

«class role»

«state pattern»
Orthogonal
Component

152 Chapter 5: State Patterns
This way of communication suggests a concurrency model in which a parent
shares its execution thread with the children.9 The parent dispatches an event to a
child by synchronously calling dispatch() on behalf of the child. Because this
method executes in the parent’s thread, the parent cannot proceed until dispatch()
returns (i.e., until the child finishes its RTC step). In this way, the parent and children
can safely share data without any concurrency hazards (data sharing is also another
method of communication among them). However, sharing the container’s data
makes the components dependent on the container and thus makes them less reus-
able.

5.4.4 Sample Code

The sample code demonstrates the typical code organization for the Orthogonal
Component state pattern, in which the component (Alarm) is implemented in a sepa-
rate module from the container (AlarmClock). The modules are coupled through
shared signals, events, and (potentially) variables (Listing 5.4).

Listing 5.4 Common signals and events (clock.h)

Listing 5.5 Alarm finite state machine declaration (alarm.h)

9. Most commonly, all orthogonal regions in a statechart also share a common execution thread [Douglass 99].

 1 enum AlarmClockSignals {
 2 TIME_SIG = Q_USER_SIG,
 3 ALARM_SIG, TERMINATE
 4 };
 5 struct AlarmInitEvt : public QEvent {
 6 HWND hWnd;
 7 };
 8 struct TimeEvt : public QEvent {
 9 unsigned currentTime;
 10 };

 1 class Alarm : public QFsm {
 2 public:
 3 Alarm() : QFsm((QFsmState)initial) {}
 4 private:
 5 void initial(QEvent const *e);
 6 void on(QEvent const *e);
 7 void off(QEvent const *e);
 8 private:
 9 unsigned myAlarmTime; // time to trigger the alarm
 10 HWND myHwnd; // window handle
 11 };

Orthogonal Component 153
Listing 5.5 shows the declaration of the Alarm state machine, which derives from
the QFsm class and therefore uses a slightly different state handler signature. The
Alarm class encapsulates two attributes — the self-explanatory myAlarmTime (line
9) and myHwnd (line 10) — to store the window handle that the Alarm component
needs in the implementation.

Listing 5.6 Abbreviated Alarm finite state machine implementation (alarm.cpp)

Listing 5.6 shows an abbreviated implementation of the Alarm FSM. The first
interesting aspect is the initial pseudostate (lines 4–8), which uses the event argu-
ment to initialize the myHwnd attribute (line 5). As described in Chapter 4, the state

 1 #include "clock.h"
 2 #include "alarm.h"
 3
 4 void Alarm::initial(QEvent const *e) {
 5 myHwnd = (static_cast<AlarmInitEvt const *>(e))->hWnd;
 6 . . .
 7 QFSM_TRAN(&Alarm::on);
 8 }
 9 void Alarm::on(QEvent const *e) {
 10 switch (e->sig) {
 11 case TIME_SIG:
 12 if ((static_cast<TimeEvt *>(e))->currentTime == myAlarmTime) {
 13 Beep(1000, 20);
 14 PostMessage(myHwnd, WM_COMMAND, ALARM_SIG, 0); // notify
 15 }
 16 return;
 17 case IDC_OFF:
 18 . . .
 19 QFSM_TRAN(&Alarm::off);
 20 return;
 21 }
 22 }
 23 void Alarm::off(QEvent const *e) {
 24 char buf[12];
 25 unsigned h, m;
 26 switch (e->sig) {
 27 case IDC_ON:
 28 GetDlgItemText(myHwnd, IDC_ALARM, buf, sizeof(buf));
 29 if (...) { // does the user input represent valid alarm time?
 30 . . .
 31 QFSM_TRAN(&Alarm::on);
 32 }
 33 return;
 34 }
 35 }

154 Chapter 5: State Patterns
machine interface intentionally separates the initial transition from the state machine
instantiation, which this code exploits. The AlarmClock class, and thus its Alarm
component, are instantiated statically before the window handle is allocated. How-
ever, the initial transition, which is explicitly triggered much later, offers the con-
tainer (AlarmClock) an opportunity to initialize the component with the window
handle (or any other arbitrary parameters passed in the initializing event).

The other interesting feature is the handling of the TIME signal in (Listing 5.6,
lines 11–16). The guard condition for starting the alarm is the match between the
current time and the preset alarm time (line 12). Notice the usual downcasting of the
generic event pointer to the concrete event class (TimeEvt* in this case). In addition,
line 14 illustrates how the Alarm component notifies the container by posting the
ALARM_SIG event.

Listing 5.7 Abbreviated AlarmClock hierarchical state machine implementation

 1 #include "clock.h"
 2 #include "alarm.h"
 3
 4 class AlarmClock : public QHsm { // hierarchical state machine
 5 public:
 6 AlarmClock() : QHsm((QPseudoState)initial) {}
 7 private:
 8 void initial(QEvent const *e); // initial pseudostate
 9 QSTATE timekeeping(QEvent const *e); // state-handler
 10 QSTATE mode12hr(QEvent const *e); // state-handler
 11 QSTATE mode24hr(QEvent const *e); // state-handler
 12 QSTATE final(QEvent const *e); // state-handler
 13 private:
 14 unsigned myCurrentTime; // current time (in minutes)
 15 Alarm myAlarm; // reactive component Alarm
 16 BOOL isHandled;
 17 HWND myHwnd; // the main window handle
 18 friend class Alarm; // grant friendship to reactive component(s)
 19 friend BOOL CALLBACK DlgProc(HWND hwnd, UINT iEvt,
 20 WPARAM wParam, LPARAM lParam);
 21 };
 22
 23 void AlarmClock::initial(QEvent const *) {
 24 . . .
 25 AlarmInitEvt ie; // initialization event for the Alarm component
 26 ie.wndHwnd = myHwnd;
 27 myAlarm.init(&ie); // initial transition in the alarm component
 28 Q_INIT(timekeeping);
 29 }
 30

Orthogonal Component 155
Listing 5.7 shows the main points of the AlarmClock class implementation. The
class aggregates an Alarm object (line 15) and grants friendship to the Alarm class
(line 18). The myAlarm component does not make use of the friendship in this partic-
ular case, but generally, the friendship is necessary if the container shares data with
its components (see Exercise 5.10).10

By implementing half of the problem (the Alarm component) as a classical flat
state machine and the other half as a hierarchical state machine (the AlarmClock
container), an opportunity arises to contrast the nonhierarchical and hierarchical
solutions for essentially identical state machine topologies. Figure 5.9 illustrates the
different approaches to representing mode switches in the timekeeping HSM and
in the Alarm FSM. The hierarchical solution demonstrates the Device Mode idiom
[Douglass 99], in which the signals 12H and 24H trigger high-level transitions to
states mode12h and mode24h, respectively. The Alarm FSM, on the hand, uses direct
transitions ON and OFF between its two modes. Although it is not clearly apparent
with only two modes, the number of mode switch transitions in the hierarchical
technique scales up proportionally to the number of modes, n. The nonhierarchical

 31 QSTATE AlarmClock::timekeeping(QEvent const *e) {
 32 switch (e->sig) {
 33 . . .
 34 case IDC_ON:
 35 case IDC_OFF:
 36 myAlarm.dispatch(e); // dispatch event to orthogonal component
 37 return 0;
 38 }
 39 return (QSTATE)top;
 40 }
 41
 42 QSTATE AlarmClock::mode24hr(QEvent const *e) {
 43 TimeEvt pe; // temporary for propagated event
 44 switch (e->sig) {
 45 . . .
 46 case WM_TIMER:
 47 . . . // update myCurrentTime
 48 pe.sig = TIME_SIG;
 49 pe.currentTime = myCurrentTime;
 50 myAlarm.dispatch(&pe); //dispatch event to orthogonal component
 51 return 0;
 52 }
 53 return (QSTATE)timekeeping;
 54 }

10. Components also must “know” their container. If the container is a Singleton, then access is through its static
instance() method (see the Singleton pattern in Gamma and colleagues [Gamma+ 95]).

156 Chapter 5: State Patterns
solution, on the other hand, requires many more transitions — n(n – 1), in general
— to interconnect all states. There is also a difference in behavior. In the hierarchical
solution, if a system is already in mode12h, for example, and the 12H signal arrives,
the system leaves this mode and enters it again. (Naturally, you could prevent that
by overriding the high-level 12H transition in the mode12h state.) In contrast, if the
flat state machine of the Alarm class is in the off state, for example, then nothing
happens when the OFF signal appears. This solution might or might not be what you
want; however, the hierarchical solution (the Device Mode idiom) offers you both
options and scales much better with a growing number of modes.

Exercise 5.7 Change the superclass of the Alarm class from QFsm to QHsm and change
the Alarm state machine to use the same structure as the Alarm orthogo-
nal region shown in Figure 5.8. Note that you don’t need to change any-
thing in the AlarmClock container class because the QFsm and QHsm
classes have equivalent interfaces.

As a container, the AlarmClock class has several responsibilities toward its
components. First is the initialization of the Alarm component’s state machine,
which is best accomplished in the initial transition of the container (Listing 5.7, lines
23–29). Note the use of the initialization event (ie) to pass the window handle to the
component. Second is the explicit dispatching of events to the component(s) (lines
36, 50). You can view this responsibility as a liability (errors will result if the con-
tainer “forgets” to dispatch events in some contexts), but you can also view it as hav-
ing greater flexibility and as an opportunity to improve performance. Explicit event
dispatching offers more flexibility than the event dispatching of orthogonal regions
because the container can not only choose which events it wants to dispatch to its
children but even change the event type on the fly. For instance, AlarmClock dis-
patches events ON and OFF to its myAlarm component as they arrive (lines 34–37).
However, the WM_TIMER signal is handled differently (lines 46–51). In this case,
AlarmClock synthesizes a TimeEvt event on the fly, furnishes the current time, and
dispatches this event to the Alarm component. Note that TimeEvt can be allocated
automatically (on the stack) because it is dispatched synchronously to the compo-
nent.

Complete control over the dispatching of events to components typically
allows significant performance gains. For example, in a real digital clock
design, the TICK event would probably occur every second so that the clock could
display seconds as well. However, the alarm will probably still be specified to
within one minute. Therefore, AlarmClock could dispatch only every 60th TICK
to the Alarm component (only when the minutes roll over). The UML design with

Orthogonal Component 157
orthogonal regions, on the other hand, would burn many more CPU cycles by
automatically dispatching every TICK to every orthogonal region (i.e., to the Alarm
region as well).

Figure 5.10 shows the Windows GUI corresponding to the sample code described
in this section. The dialog box clearly separates the timekeeping and alarm functions.
There is no need to display the states of these components separately because they
are readily apparent from the settings of the two groups of radio buttons.

Figure 5.10 Orthogonal Component sample application GUI

To make this example a little more interesting, I accelerated the clock to tick
at a much faster rate than usual (it makes about 20 accelerated minutes per real
second). That way you can hear an alarm (a short beep) much more often (about
every 72 seconds).

Exercise 5.8 Find the Orthogonal Component state pattern implementation on the
accompanying CD-ROM and execute it. Change the timekeeping mode
from 24 to 12 hours and the alarm mode from on to off. Notice that
only in the alarm-off state can you change the alarm time. Set the new
alarm time and turn the alarm back on. Verify that the clock beeps when
it reaches the alarm time.

Exercise 5.9 Reimplement the Orthogonal Component state pattern in C. Hint:
Appendix A describes the techniques for realizing classes and inheritance
in C, and Section 4.5 of Chapter 4 provides specific guidelines for instan-
tiating the behavioral inheritance meta-pattern in C.

158 Chapter 5: State Patterns
Exercise 5.10 Components must often “know” their container. Apply the Singleton
design pattern (read about the Singleton pattern in Gamma and col-
leagues [Gamma+ 95]) to the AlarmClock class, and reorganize the
Alarm class such that it can accesses the AlarmClock container through
the Singleton’s instance() method. Remove the myHwnd attribute from
the Alarm class and let it share the window handle of AlarmClock
instead.

5.4.5 Consequences

The Orthogonal Component state pattern has the following consequences.
• It partitions independent islands of behavior into separate reactive objects.

This separation is deeper than with orthogonal regions because the objects
have both distinct behavior and distinct data.

• Partitioning introduces a container–component (also known as parent–child or
master–slave) relationship. The container implements the primary function-
ality and delegates other (secondary) features to the components. Both the
container and the components are state machines.

• The components are often reusable with different containers or even within
the same container (the container can instantiate more than one component of
a given type).

• The container shares its execution thread with the components.
• The container communicates with the components by directly dispatching

events to them. The components notify the container by posting events to it,
never through direct event dispatching.

• The components typically use the Reminder state pattern to notify the con-
tainer (i.e., the notification events are invented specifically for the internal
communication and are not relevant externally). If there are more compo-
nents of a given type, then the notification events must identify the originating
component (the component passes its ID in a parameter of the notification
event).

• The container and components can share data. Typically, the data is an
attribute of the container (to allow multiple instances of different containers).
The container typically grants friendship to the selected components.

• The container is entirely responsible for its components. In particular, it must
explicitly trigger initial transitions in all components,11 as well as explicitly dis-

11. In C, the container also must call constructors for all its components explicitly.

Orthogonal Component 159
patch events to the components. Errors may arise if the container “forgets” to dis-
patch events to some components in some of its states.

• The container has full control over the dispatching of events to the compo-
nents. It can choose not to dispatch events that are irrelevant to the compo-
nents. It can also change event types on the fly and provide some additional
information to the components.

• The container can dynamically start and stop components (e.g., in certain
states of the container state machine).

• The composition of state machines is not limited to just one level. Components
can have reactive subcomponents; that is, the components can be containers
for lower level subcomponents. Such a recursion of components can proceed
arbitrarily deep.
The Orthogonal Component state pattern is popular in GUI systems. For

example, dialog boxes are the containers that aggregate components in the form
of dialog controls (buttons, check boxes, sliders, etc.). Both dialog boxes and dia-
log controls are event-driven objects with state behavior (e.g., a button has
depressed and released states). GUIs also use the pattern recursively. For
instance, a custom dialog box can be a container for the standard File-Select or
Color-Select dialog boxes, which in turn contain buttons, check boxes, and so
on.

The last example points to the main advantage of the Orthogonal Component
state pattern over the AND-decomposition of statecharts (orthogonal regions).
Unlike an orthogonal region, you can reuse a reactive component many times
within one application and across many applications.

Both orthogonal regions and reactive components directly compete in the
design space with simple extended state variables. For example, Douglass [Dou-
glass 99] presents a simple Latch state pattern that is applicable to reactive
objects that must pass through a specific state in their life cycle in order to pro-
ceed with some activity. The proposed solution is to build a latch with an orthog-
onal region and two states: latched and unlatched. The latch starts in the
unlatched state and is forced to the latched state when the object passes
through the precondition state. Subsequently, the main state machine of the
object uses the IS_IN(latched) operator12 as a guard on a transition to a state. A
simpler solution is to implement the latch as a simple flag, cleared in the initial tran-
sition, and set on entry to the precondition state. Subsequently, the object’s state

12. The IS_IN(foo) operator returns TRUE if any of the orthogonal regions is in the foo state and returns
FALSE otherwise. This operator corresponds to the QHsm::isIn() method of the behavioral inheritance
meta-pattern implementation.

160 Chapter 5: State Patterns
machine can test the flag in the guard condition. The Latch orthogonal region is
overkill here and doesn’t add value because it isn’t used to capture modal behavior;
rather, it only stores information, which is a job for an extended state variable. The
litmus test of misusing an orthogonal region as storage occurs when the region is
employed only in conjunction with the IS_IN(state) operator.

You should apply good judgment and use the Orthogonal Component (or any
other) pattern only if it simplifies your designs. Sometimes it is better to use sim-
pler solutions, like extended state variables. Your ultimate goal is to defeat com-
plexity not create clever-looking diagrams.

5.5 Transition to History

5.5.1 Intent

Transition out of a composite state, but remember the most recent active substate
so you can return to that substate later.

5.5.2 Problem

State transitions defined in high-level composite states often deal with events
that require immediate attention; however, after handling them, the system
should return to the most recent substate of the given composite sate.

For example, consider a simple toaster oven. Normally the toaster operates
with its door closed. However, at any time, the user can open the door to check
the food or to clean the oven. Opening the door is an interruption; for safety rea-
sons, it requires shutting the heater off and lighting an internal lamp. However,
after closing the door, the toaster oven should resume whatever it was doing
before the door was opened. Here is the problem: What was the toaster doing just
before the door was opened? The state machine must remember the most recent
state configuration that was active before opening the door in order to restore it
after the door is closed again.

UML statecharts address this situation with two kinds of history pseudostates:
shallow history and deep history (see Section 2.2.7 in Chapter 2). This example
requires the deep history mechanism (denoted as the circled H* icon in Figure 5.11).
The behavioral inheritance meta-pattern does not support a history mechanism auto-
matically for all states because it would incur extra memory and performance over-
heads. However, it is easy to add such support for selected states.

Transition to History 161
5.5.3 Solution

Figure 5.11 illustrates the solution, which is to store the most recently active substate
of the doorClosed state in the dedicated attribute myDoorClosedHistory. The
ideal place for setting this attribute is the exit action from the doorClosed state.
Subsequently, the transition to history of the doorOpen state (transition to the circled
H*) uses the attribute as the target of the transition. Because this target changes at
run time, it is crucial to code this transition with the Q_TRAN_DYN() macro, rather
than the usual (optimized) Q_TRAN() macro (see Section 4.4.3 in Chapter 4).

Figure 5.11 Transition to History state pattern

5.5.4 Sample Code

Listing 5.8 shows the complete implementation of the statechart from Figure 5.11 as
a console application. The emphasized elements pertain to the history mechanism.

Listing 5.8 Complete implementation of the toaster oven statechart (Figure 5.11)

TOAST

entry/

toasting
entry/

off

entry/heaterOn();
exit/heaterOff();

heating

entry/

baking

BAKE
OPEN

CLOSE/
Q_TRAN_DYN(myDoorClosedHistrory

OFF,
TIMEOUT

entry/lampOn();
exit/lampOff();

doorOpen

exit/ myDoorClosedHistory = getState();
doorClosed «state pattern»

Transition
to History

store history

transition to historyH*

 1 class ToasterOven : public QHsm {
 2 public:
 3 ToasterOven() : QHsm((QPseudoState)initial) {}
 4 protected:
 5 void initial(QEvent const *e); // initial pseudostate
 6 QSTATE doorClosed(QEvent const *e); // state-handler
 7 QSTATE off(QEvent const *e); // state-handler
 8 QSTATE heating(QEvent const *e); // state-handler
 9 QSTATE toasting(QEvent const *e); // state-handler
 10 QSTATE baking(QEvent const *e); // state-handler
 11 QSTATE doorOpen(QEvent const *e); // state-handler
 12 QSTATE final(QEvent const *e); // state-handler
 13 private:
 14 QState myDoorClosedHistory; // storage for history of "doorClosed"
 15 };

162 Chapter 5: State Patterns
 16
 17 enum ToasterOvenSignals {
 18 OPEN_SIG = Q_USER_SIG,
 19 CLOSE_SIG, TOAST_SIG, BAKE_SIG, OFF_SIG, END_SIG
 20 };
 21
 22 void ToasterOven::initial(QEvent const *) {
 23 myDoorClosedHistory = Q_STATIC_CAST(QState, &ToasterOven::off);
 24 Q_INIT(&ToasterOven::doorClosed);
 25 }
 26
 27 QSTATE ToasterOven::doorClosed(QEvent const *e) {
 28 switch (e->sig) {
 29 case Q_ENTRY_SIG: printf("door-Closed;"); return 0;
 30 case Q_EXIT_SIG: myDoorClosedHistory = getState(); return 0;
 31 case Q_INIT_SIG: Q_INIT(&ToasterOven::off); return 0;
 32 case OPEN_SIG: Q_TRAN(&ToasterOven::doorOpen); return 0;
 33 case TOAST_SIG: Q_TRAN(&ToasterOven::toasting); return 0;
 34 case BAKE_SIG: Q_TRAN(&ToasterOven::baking); return 0;
 35 case OFF_SIG: Q_TRAN(&ToasterOven::off); return 0;
 36 case END_SIG: Q_TRAN(&ToasterOven::final); return 0;
 37 }
 38 return (QSTATE)&ToasterOven::top;
 39 }
 40
 41 QSTATE ToasterOven::off(QEvent const *e) {
 42 switch (e->sig) {
 43 case Q_ENTRY_SIG: printf("toaster-Off;"); return 0;
 44 }
 45 return (QSTATE)&ToasterOven::doorClosed;
 46 }
 47
 48 QSTATE ToasterOven::heating(QEvent const *e) {
 49 switch (e->sig) {
 50 case Q_ENTRY_SIG: printf("heater-On;"); return 0;
 51 case Q_EXIT_SIG: printf("heater-Off;"); return 0;
 52 }
 53 return (QSTATE)&ToasterOven::doorClosed;
 54 }
 55
 56 QSTATE ToasterOven::toasting(QEvent const *e) {
 57 switch (e->sig) {
 58 case Q_ENTRY_SIG: printf("toasting;"); return 0;
 59 }
 60 return (QSTATE)&ToasterOven::heating;
 61 }
 62

Transition to History 163
In line 14 of Listing 5.8, you see the declaration of the myDoorClosedHistory
attribute that holds the history of the doorClosed composite state. The exit action
from doorClosed sets this attribute in line 30 by obtaining the current state from
getState() (inherited from QHsm). At this point, the current state is not well
defined because the state machine is in the middle of a transition. However, the
implementation of the QHsm event processor QHsm::dispatch() is such that the
current state pointer (QHsm::myState) is changed only after the whole transition
chain completes. So throughout the transition, QHsm::myState still points to the
most recently active state, which is and exactly what you want. Finally, the doorO-
pen state accomplishes a transition to history by means of Q_TRAN_DYN(myDoor-
ClosedHistory) (line 75).

Alongside the history mechanism, Listing 5.8 demonstrates an interesting (proper)
use of entry and exit actions that contributes to better robustness and safety of the
design. For instance, the heating state disables the heater on exit (line 51), which is
safer than doing it in all possible transitions that can lead out of this state. One
example of such a transition is triggered by OPEN, but there are more (e.g., OFF).

In addition, the transitions in lines 33, 34, and 35 again demonstrate the
Device Mode idiom (Section 5.4.4).

 63 QSTATE ToasterOven::baking(QEvent const *e) {
 64 switch (e->sig) {
 65 case Q_ENTRY_SIG: printf("baking;"); return 0;
 66 }
 67 return (QSTATE)&ToasterOven::heating;
 68 }
 69
 70 QSTATE ToasterOven::doorOpen(QEvent const *e) {
 71 switch (e->sig) {
 72 case Q_ENTRY_SIG: printf("door-Open,lamp-On;"); return 0;
 73 case Q_EXIT_SIG: printf("lamp-Off;"); return 0;
 74 case CLOSE_SIG:
 75 Q_TRAN_DYN(myDoorClosedHistory);
 76 return 0;
 77 }
 78 return (QSTATE)&ToasterOven::top;
 79 }

164 Chapter 5: State Patterns
Exercise 5.11 Find the Transition to History state pattern implementation on the
accompanying CD-ROM and execute it. You drive the application by
injecting events from the keyboard (o = Open, c = Close, t = Toast, b =
Bake, f = Off, and e = End). Verify that opening and then closing the
door from any of the states baking, toasting, or off leads back to the
original state. Modify the implementation to use the Q_TRAN() macro
instead of Q_TRAN_DYN(). Recompile and examine how this breaks the
desired behavior.

Exercise 5.12 Reimplement in C the Transition to History state pattern from Listing
5.8. Hint: Appendix A describes the techniques for realizing classes and
inheritance in C, and Section 4.5 of Chapter 4 provides specific guide-
lines for instantiating the behavioral inheritance meta-pattern in C.

5.5.5 Consequences

The Transition to History state pattern has the following consequences.
• It requires that a separate QState pointer-to-member function is provided for

each composite state to store the history of this state. It is best to use attributes of
the concrete subclass of QHsm for this purpose.

• It requires explicitly setting the history variable in the exit action from the corre-
sponding composite state using QHsm::getState().

• It requires the dynamic (not optimized) Q_TRAN_DYN(<history-variable>)
transition macro to transition to the history of a given state.

• It corresponds to the deep-history, not the shallow-history, pseudostate (see Sec-
tion 2.2.7 in Chapter 2).

• You can explicitly clear the history of any state by resetting the corresponding
history variable.
As a part of the UML specification, the history mechanism qualifies as a

widely used pattern. The ROOM method [Selic+ 94] describes a few examples of
transitions to history in real-time systems, whereas Horrocks [Horrocks 99]
describes how to apply the history mechanism in the design of GUIs.

5.6 Summary
As Gamma and colleagues [Gamma+ 95] observe: “One thing expert designers
know not to do is solve every problem from first principles.” Collecting and docu-

Summary 165
menting design patterns is one of the best ways of capturing and disseminating
expertise in any domain, not just in software design.

State patterns are specific design patterns that are concerned with optimal
(according to some criteria) ways of structuring states, events, and transitions to
build effective state machines. In this chapter, I described just five such patterns13 at
various levels of abstraction. The first two, Ultimate Hook and Reminder, are at a
significantly lower level than the rest, and perhaps I should have called them idioms
rather than patterns. However, they are so fundamental and useful that they belong
in every state machine designer’s bag of tricks.

The other three patterns (Deferred Event, Orthogonal Component, and Tran-
sition to History) are alternative (lightweight) realizations of features supported
natively in UML statecharts. Each one of these state patterns offers significant
performance and memory savings compared to the full UML-compliant realiza-
tion.

13. You also can find a few useful idioms for structuring state machines.

166 Chapter 5: State Patterns

6

Chapter 6

Inheriting State Models

I have yet to see any problem, however complicated, which,
when you looked at it in the right way, did not become still more
complicated.
— Paul Anderson

Useful reactive classes that you create through instantiation of the fundamental
behavioral inheritance meta-pattern frequently have rich state behavior and embed
involved statecharts. Coming up with a good statechart that captures a nontrivial
behavior is not easy. When you successfully design, implement, and debug a robust
reactive class, you want to get the maximum mileage out of it by reusing it in other
projects. Seldom, however, can you reuse a class as-is without modifications. You
need to be able to inherit from it and refine its behavior in subclasses. Traditional
OOP prescribes how to inherit attributes and refine individual class methods,1 but
how do you inherit and refine entire state machines?

The issue is tricky because the behavioral inheritance meta-pattern represents a
statechart as a group of interrelated class methods (state handlers) rather than as a

1. If you are interested in the C implementation, please refer to Appendix A for an explanation of how to realize
inheritance in C.
167

168 Chapter 6: Inheriting State Models
single method. The challenge is to keep intact the numerous relationships among
state handlers in the process of inheriting and refining the derived statechart. The
associations among state handlers define the topology of the state machine and come
in two flavors: (1) state handlers refer other state handlers as targets of state transi-
tions and (2) state handlers designate other state handlers as superstates. As you will
see in a concrete working example, the behavioral inheritance meta-pattern naturally
preserves the statechart topology in a derived reactive class and enables easy refine-
ment of the inherited state handlers. However, how it happens is certainly not trivial,
and in this chapter, I peek under the hood to find out exactly what’s going on.

Another concern associated with inheriting entire state models is compliance with
the Liskov Substitution Principle (LSP). According to the traditional LSP, any super-
class should be freely substitutable for its subclass. For reactive classes, this means
that the behavior refined in any subclass should remain compatible with the behavior
of the original base class. At a minimum, this compatibility requires that the subclass
must accept all events that can be accepted by the parent, but there is obviously more
to it. Although it is generally difficult to define “compatibility of behavior” precisely,
this chapter at least enlists design heuristics and practical rules of thumb for inherit-
ance and refinement that comply with the LSP.

In Section 2.2.2 of Chapter 2, I introduced the concept of behavioral inheritance
and proposed extending LSP to nested states. Please note that these concepts are dis-
tinctively different from the classical class inheritance and the traditional LSP for
classes that are the subject of this chapter.

In this chapter, I use the most advanced programming techniques yet in the discus-
sion of statechart implementations. In particular, I rely heavily on polymorphism,
which I intentionally have avoided up to this point. Although the techniques pre-
sented here can be very useful, they come at the cost of increased complexity and
run-time overhead. Please feel free to skip this chapter on the first reading because
the material covered here is not necessary to comprehend the other parts of the book.

6.1 Statechart Refinement Example in C++
To illustrate the inheritance and refinement of a nontrivial statechart, consider the
Quantum Calculator example introduced in Chapter 1. Figure 1.2 on page 7 is a
comparison between the original Visual Basic Calculator and the Quantum Calcula-
tor user interfaces. Notice that the Quantum Calculator does not have a % button
and consequently does not support calculations of percentages. I have intentionally
saved this feature until now so that I can add it through inheritance and demonstrate
a nontrivial refinement of the statechart (Figure 6.1). However, I propose to imple-
ment percentage calculations differently than in the original Visual Basic Calculator
because the Visual Basic implementation is incorrect (Exercise 6.1). The goal is to
enable calculations of the type x + y% gives z (e.g., price + sales tax gives total),
wherein the + operator can be replaced by any of –, ×, or ÷.

Statechart Refinement Example in C++ 169
Figure 6.1 The original Quantum Calculator GUI (a) and the enhanced Quantum

Calculator after adding the % button (b)

Exercise 6.1 Launch the Visual Basic Calculator application from the accompanying
CD-ROM (refer to Appendix C for the structure of the CD-ROM). Try
computing 100 + 8% and verify that you don’t get the expected result
(108). Enter 2, –, –, % and watch the application crash.

From the problem statement, you see that the % button has a function similar to
the = button, in that it terminates a two-operand expression. This similarity suggests
that the PERCENT event should be handled in the same state context as the EQUALS
event — that is, in the operator2 state. This is also the only place it needs to be han-
dled, as shown in Figure 6.2.

This example illustrates a nontrivial refinement to a statechart because it requires
modifying the existing operand2 state (by adding a new transition), rather than
introducing a new state. The problem is that operand2 is already involved in many
relationships (Figure 6.2). For example, it is the superstate of zero2, int2, and
frac2, as well as the source of transitions triggered by the signals EQUALS, OPER, and
CE. The question is, can you override just the operand2() state handler without
breaking all the relationships in which it already takes part? You can if the
operand2() state handler is declared virtual in the base class. In other words, the
virtual function mechanism of C++ also works for pointer-to-member functions and
accomplishes exactly what you want. I’ll leave the interesting question of how this is
done to Section 6.1.1 and proceed with the example.

Listing 6.1 shows the Calc1 class, which is just a slightly modified version of the
original Quantum Calculator Calc class from Chapter 1. The Calc1 class is pre-
pared for inheritance2 by declaring all state handlers, as well as other helper meth-
ods, virtual3 (e.g., Listing 6.1, line 7). Calc1 also applies the Singleton design
pattern [Gamma+ 95] so that any subclass of Calc1 can be plugged in without

170 Chapter 6: Inheriting State Models
affecting the rest of the GUI code. You just introduce the static member function
Calc1::instance() (line 2) and protect the constructor (line 5) to prevent uncon-
trolled instantiation of Calc1. Other aspects of the implementation of the Calc1
class are identical to the original Calc class, including all the references to the
operand2 state (lines 11–22).

2. The base class Calc originally could have been designed with inheritance and refinement in mind, in which
case, creation of the Calc1 class would be unnecessary.

3. In the fine-tuning phase, you could recover some performance for some methods by selectively removing the
virtual keyword.

Figure 6.2 Refined statechart of an advanced Quantum Calculator; the refined

operand2 state and the new transition triggered by the PERCENT signal

are shown in bold

entry/

calc

ready
entry/

negated1

entry/

result
OPER[keyId ==
 PLUS]/

begin

operand1

opEntered

zero1
0/
1_9/

int1
0/
1_9/

frac1
1_9 POINT

POINT

POINT POINT1_9 1_900

entry/

negated2

operand2

zero2
0/
1_9/

int2
0/
1_9/

frac2
1_9 POINT

POINT

0 1_9 POINT 0 1_9 POINT

OPER[keyId==MINUS]

CE

CE

EQUALS

OPER

C

OPER[keyId==MINUS]

OPER

IDCANCEL

CE

CE

PERCENT

OPER

Statechart Refinement Example in C++ 171
Listing 6.1 The Calc1 reactive class prepared for inheritance

The refined Quantum Calculator, represented by the Calc2 class (Listing 6.2),
inherits from Calc1 and overrides only the operand2() virtual state handler (line
3). This state handler method is subsequently defined in lines 6 through 30. This
method explicitly handles only one signal, PERCENT (line 18), and delegates all other
signals to the original Calc1::operand2() state handler (line 29). Handling of the
PERCENT signal (lines 9–27) depends on the last operator entered. For the additive
operators + and –, the action is to substitute the second operand, myOperand2, with
the expression 1 ± myOperand2/100.0 and simultaneously to set the operator to
multiplication (lines 12–13, 16–17). The following transition (line 26) causes evalua-
tion of the expression in the entry action to result (Figure 6.2), which produces the
desired result. For the multiplicative operators * and /, the action simply divides
myOperand2 by 100 (line 21) and does not replace the operand. Please note that the
potential case of a division by zero (e.g., if the user entered x ÷ 0%) already is han-
dled in the eval() action invoked on entry to result.

 1 class Calc1 : public QHsm {
 2 static Calc1 *instance(); // Singleton accessor class method
 3 . . .
 4 protected:
 5 Calc1() : QHsm((QPseudoState)initial) {} // protected constructor
 6 . . .
 7 virtual QSTATE operand2(QEvent const *e); // virtual state-handler
 8 . . .
 9 };
 10
 11 QSTATE Calc1::zero2(QEvent const *e) {
 12 . . .
 13 return (QSTATE)&Calc1::operand2; // unchanged from Calc
 14 }
 15 QSTATE Calc1::int2(QEvent const *e) {
 16 . . .
 17 return (QSTATE)&Calc1::operand2; // unchanged from Calc
 18 }
 19 QSTATE Calc1::frac2(QEvent const *e) {
 20 . . .
 21 return (QSTATE)&Calc1::operand2; // unchanged from Calc
 22 }

172 Chapter 6: Inheriting State Models
Listing 6.2 Derived and refined Calc2 C++ statechart

The C++ syntax of the pointer-to-member function &Class::method can be
confusing in the context of class inheritance. For example, in lines 13, 17, and
21 of Listing 6.1, state handlers zero2(), int2(), and frac2() return the pointer-
to-member function &Calc1::operand2, which suggests that they all refer to the
Calc1::operand2() implementation. In spite of this, when the Calc2 class inherits
these state handlers from Calc1, the handlers behave polymorphically by returning
the Calc2::operand2() implementation. The class name in the fully qualified
pointer-to-member function syntax has no effect (i.e., late binding still applies).
However, the syntax can be confusing because, in all other circumstances, the fully
qualified method name Class::method() enforces early binding by selecting a spe-
cific method implementation (as in Listing 6.2, line 29).

 1 class Calc2 : public Calc1 {
 2 protected:
 3 virtual QSTATE operand2(QEvent const *e); // overridden handler
 4 };
 5
 6 QSTATE Calc2::operand2(QEvent const *e) {
 7 switch (e->sig) {
 8 case IDC_PERCENT:
 9 sscanf(myDisplay, "%lf", &myOperand2);
 10 switch (myOperator) {
 11 case IDC_PLUS:
 12 myOperand2 = 1.0 + myOperand2/100.0; // x*(1 + y%)
 13 myOperator = IDC_MULT;
 14 break;
 15 case IDC_MINUS:
 16 myOperand2 = 1.0 - myOperand2/100.0; // x*(1 - y%)
 17 myOperator = IDC_MULT;
 18 break;
 19 case IDC_MULT: // intentionally fall through...
 20 case IDC_DIVIDE:
 21 myOperand2 /= 100.0; // x*y%, x/y%
 22 break;
 23 default:
 24 ASSERT(0);
 25 }
 26 Q_TRAN(&Calc2::result); // transition to "result"
 27 return 0; // event handled
 28 }
 29 return Calc1::operand2(e); // let Calc1 handle other events
 30 }

Statechart Refinement Example in C++ 173
Exercise 6.2 Launch the enhanced Quantum Calculator application qcalc2.exe
from the accompanying CD-ROM (refer to Appendix C and the HTML
browser on the disc for the description of the CD-ROM). Try computing
100 + 8%, 100 – 8%, 100 × 8%, 100 ÷ 8%, and 100 ÷ 0%. Try event
sequences that caused the Visual Basic Calculator to crash in Exercise
6.1.

As you’ve verified for yourself in Exercise 6.2, the enhanced Quantum Calculator
works just fine. The behavioral inheritance meta-pattern not only automatically assim-
ilates the newly defined Calc2::operand2() state handler into the fabric of between-
state relationships inherited from the Calc1 base class, but it even allows straightfor-
ward reuse of behavior from the original Calc1::operand2() state handler.

Exercise 6.3 The technique presented here allows you to refine all aspects of a state
handler. For example, find the VC++ project qcalc2.dsp on the accom-
panying CD-ROM and add an entry action to the Calc2::
opearator2() state handler (e.g., invoke the Win32 Beep()). Rebuild
the project and note that only one module, calc2.cpp, needs recompila-
tion. Launch the application and verify that your entry action indeed
fires on each entry into the refined operator2 state.

Correct operation under inheritance is an important confirmation that the struc-
ture of the behavioral inheritance meta-pattern is indeed flexible and adaptable. This
characteristic allows you to take full advantage of inheritance and, once again, the
principle of programming-by-difference because refinement of behavior requires that
you code only the differences between the reactive base class and its subclass.

6.1.1 How Does It Work?

Something more than traditional bread-and-butter polymorphism is going on
with the inheritance of statecharts. Listing 6.3 illustrates the essence of the mecha-
nism.

Listing 6.3 Test case for a pointer-to-virtual-member function

 1 class Foo {
 2 public:
 3 typedef void (Foo::*Handler)();
 4 virtual ~Foo() {} // virtual destructor
 5 Handler f()

174 Chapter 6: Inheriting State Models
Foo::Handler (Listing 6.3, line 3) is a type describing a pointer-to-member func-
tion (corresponding to QHsm::QState). Method Foo::f() returns member function
g() (line 14), which corresponds to returning a superstate from a state handler.
Please note that g() is declared virtual in class Foo (line 6). The value returned
from foo.f() is subsequently assigned to the pointer-to-member function h (line
20). If you invoke a method via the h pointer on behalf of the foo object, as in line
23, the instance invoked is Foo::g() (so you would see the text “Foo::g()” on
your screen). What happens, however, if you dereference the h pointer on behalf of
the bar object, as in line 24? Is Foo::g() still invoked or is it Bar::g()? In other
words, does the virtual mechanism work for a pointer-to-member function? It turns
out that it is, so you would see the text “Bar::g()” on your screen. The question is
how?

The pointer-to-member function h must store something other than simply the
memory location of Foo::g(), returned from Foo::f() (which would be the case
if g() were declared nonvirtual in class Foo). When g() is virtual, the C++ com-
piler performs a trick that enables polymorphic behavior. Generally, strategies
used by different C++ compilers seem to fall into two categories [Lippman 96].
The first strategy is to represent pointer-to-member functions as aggregates that
can hold both regular addresses as well as offsets into the virtual table (and pro-
vide a mechanism to distinguish between the two). In this case, the pointer-to-
member function usually is bigger than a regular function pointer, and every
invocation is charged with the cost of checking whether the call is virtual or non-
virtual. The other strategy is to introduce a function-like vcall thunk and store its

 6 virtual void g();
 7 };
 8
 9 class Bar : public Foo {
 10 public:
 11 virtual void g(); // override g()
 12 };
 13
 14 Foo::Handler Foo::f() { return g; }
 15 void Foo::g() { printf("Foo::g()\n"); }
 16 void Bar::g() { printf("Bar::g()\n"); }
 17
 18 Foo foo;
 19 Bar bar;
 20 Foo::Handler h = foo.f();
 21
 22 void main() {
 23 (foo.*h)();
 24 (bar.*h)();
 25 }

Statechart Refinement Example in C++ 175
address in a pointer-to-member function.4 The thunk (which the compiler synthe-
sizes behind the scenes) extracts and invokes the appropriate slot in the associated
virtual table. The advantages of this approach are that virtual and nonvirtual invoca-
tions are treated transparently and that pointer-to-member functions are the same
size as pointers to nonmember functions. Because the behavioral inheritance meta-
pattern often manipulates and stores pointer-to-member functions, the thunk tech-
nique is much better suited for coding state machines.

Note: Some C++ compilers offer an option to select the internal representation
of pointer-to-member functions. For example, GNU gcc provides the
command line option -fvtable-thunks to choose the thunk technique,
which you should select to improve performance of your state machines
[WindRiver 95].

The following machine language output, compiled from Listing 6.3 by the
Microsoft C/C++ 32-bit compiler (optimized code), illustrates the vcall thunk tech-
nique.5

4. Examples of compilers that use this technique include Microsoft C++ and Borland C++ for Intel x86 processors.
5. The machine code was cut and pasted from a debug session (please note that I intentionally used optimized,

non-debug version of code). I’ve added the comments manually.

; Foo::g()
00401010 push 407040h ; stack address of "Foo::g()\n"
00401015 call 00401115 ; call printf()
0040101A pop ecx
0040101B ret

; Bar::g()
00401020 push 40704Ch ; stack address of "Bar::g()\n"
00401025 call 00401115 ; call printf()
0040102A pop ecx
0040102B ret

; main()
004010F0 mov ecx,4078E8h ; place foo into ecx (this ptr)
004010F5 call dword ptr ds:[4078E4h] ; call via pointer h
004010FB mov ecx,4078E0h ; place bar into ecx (this ptr)
00401100 jmp dword ptr ds:[4078E4h] ; call via pointer h

; thunk
00401110 mov eax,dword ptr [ecx] ; grab vtable
00401112 jmp dword ptr [eax+4] ; jump to offset 1

176 Chapter 6: Inheriting State Models
When you step through the Foo::f() method at address 00401E03, you’ll find
that it returns the address 00401110, which is the address of the compiler-syn-
thesized vcall thunk. This address is subsequently stored in the pointer-to-mem-
ber function h allocated at 004078E4. A function invocation through pointer-to-
member h takes only one machine instruction (e.g., main() performs two such
invocations at addresses 004010F5 and 004011006). The vcall thunk itself is very
concise. It expects the address of the object (the this pointer) in the ecx register,
which the thunk dereferences to find the corresponding virtual table. In the next
instruction, the thunk simply jumps to the address pointed to by the appropriate
slot in the virtual table (the second slot in this case). Overall, the generated code
is beautifully simple and tight.

Exercise 6.4 Execute the test code example from Listing 6.3 and step through the
code at assembly level. Subsequently remove the keyword virtual in
line 6. Recompile and step through the code again. What difference do
you see?

The main points to remember from this discussion are that (1) the C++ virtual
mechanism works for pointer-to-virtual-member functions, which enables
straightforward inheritance and refinement in the behavioral inheritance meta-
pattern, and (2) the mechanism incurs some additional overhead for all state
handlers declared virtual, regardless of whether they are actually overridden
in the subclasses.

; Foo::f()
00401E03 mov eax,[00407E14]
00401E08 test eax,eax
00401E0A je 00401E0E
00401E0C call eax
00401E0E push 407024h
00401E13 push 407014h
00401E18 call 00401EEB
00401E1D push 407010h
00401E22 push 407000h
00401E27 call 00401EEB
00401E2C add esp,10h
00401E2F ret

6. At the address 00401100, you can see the typical function epilog elimination. Because the second
method call is the last instruction in main(), the compiler synthesized a jump rather than a call
instruction.

Statechart Refinement Example in C 177
6.2 Statechart Refinement Example in C
A C compiler doesn’t arrange for polymorphic state handler behavior as a C++
compiler does. In C, you are responsible for constructing the polymorphic state
handlers suitable for inheritance and refinement. Section A.2 in Appendix A
describes techniques for implementing polymorphism in C as a set of idioms and pre-
processor macros that I call “C+.” This section uses “C+” techniques7 to implement
polymorphic state machines in C.

6.2.1 Preparing a “C+” State Machine

for Polymorphism

As in the case of a C++ implementation, you start by creating a separate reactive base
class, Calc1, that has behavior identical to the original Quantum Calculator Calc
class but is polymorphic and applies the Singleton design pattern. As with any poly-
morphism-ready “C+” class, Calc1 needs a virtual table (v-table). This v-table must
contain all state handlers, as well as other methods that you might want to invoke
polymorphically.

Subsequently, you need to initialize the virtual table and then hook the virtual
pointer (v-pointer) in the protected constructor Calc1Ctor_().

7. Although I use the strange name “C+,” the code is plain, highly portable ANSI C, even though it often looks like
C++.

SUBCLASS(Calc1, QHsm)
 . . .
VTABLE(Calc1, QHsm) /* v-table for Calc1 extending QHsm */
 . . .
 QState (*operand2)(Calc1 *me, QEvent const *e);
 . . .
METHODS
 Calc1 *Calc1Ctor_(Calc1 *me); /* protected constructor */
 Calc1 *Calc1Instance(void); /* static Singleton accessor method */
 . . .
 QSTATE Calc1_operand2(Calc1 *me, QEvent const *e);
 . . .
END_CLASS

BEGIN_VTABLE(Calc1, QHsm) /* initialize v-table of Calc1 class */
 . . .
 VMETHOD(Calc1, operand2) = Calc1_operand2; /*bind implementation*/
 . . .
END_VTABLE

Calc1 *Calc1Ctor_(Calc1 *me) {
 /* construct the superclass (QHsm) */

178 Chapter 6: Inheriting State Models
Finally, you need to change all references to state handlers of the Calc1 class
to use dynamic rather than static binding. The following state handler for the
begin state illustrates how you achieve this.

This state handler demonstrates both ways of referencing state handlers: as
targets of state transitions and as superstates. In both cases, you replace the
direct reference to a state handler with an indirect reference through the virtual
pointer VPTR(class, me)->handler. The “C+” VPTR() macro (see Appendix A)
simply returns the correctly cast v-pointer, through which you can dynamically
resolve the desired state handler (i.e., the handler that is characteristic for the
given me pointer). This macro exactly emulates the behavior of the C++ vcall
thunk but is slightly more efficient (at the expense of code space) because the
equivalent of the thunk is synthesized in-line.

6.2.2 Inheriting and Refining the “C+” State Machine

After the groundwork of preparing the base class for polymorphism is in place,
implementing inheritance and refinement is straightforward.

Listing 6.4 Derived and refined Calc2 “C+” statechart

 if (!QHsmCtor_(&me->super_, (QPseudoState)Calc1_initial)) {
 return 0;
 }
 VHOOK(Calc1); /* hook the v-pointer to the Calc1 v-table */
 return me;
}

QSTATE Calc1_begin(Calc1 *me, QEvent const *e) {
 switch (e->sig) {
 case IDC_OPER:
 if (((CalcEvt *)e)->keyId == IDC_MINUS) {
 Q_TRAN(VPTR(Calc1, me)->negated1); /*polymorphic transition*/
 return 0;
 }
 break;
 }
 return (QSTATE)VPTR(Calc1, me)->ready; /*polymorphic superstate*/
}

 1 SUBCLASS(Calc2, Calc1) /* derive Calc2 from Calc1 */
 2 VTABLE(Calc2, Calc1) /* Calc2 needs a separate v-table */
 3 METHODS
 4 Calc2 *Calc2Ctor_(Calc2 *me); /* protected constructor */
 5 QSTATE Calc2_operand2(Calc2 *me, QEvent const *e);
 6 END_CLASS

Statechart Refinement Example in C 179
The points of interest in Listing 6.4 include subclassing Calc1 (lines 1–6), ini-
tializing the virtual table (lines 8–11), and delegating unhandled events to the orig-
inal Calc1 state handler (line 45). The derived Calc2 class defines its own virtual
table (line 2) and a new implementation of the operand2 state handler (line 5).
Subsequently, this implementation is bound to the method in the virtual table (lines
9–10), and the v-table is hooked in the constructor (line 17). The C implementa-
tion of Calc2_operand2() is essentially identical to the Calc2::operand2() C++

 7
 8 BEGIN_VTABLE(Calc2, Calc1) /* initialize the Calc2 v-table */
 9 VMETHOD(Calc1, operand2) = /* bind the implementation */
 10 (QSTATE (*)(Calc1*, QEvent const *))Calc2_operand2;
 11 END_VTABLE
 12
 13 Calc2 *Calc2Ctor_(Calc2 *me) {
 14 if (!Calc1Ctor_(&me->super_)) { /* invoke superclass' ctor */
 15 return 0;
 16 }
 17 VHOOK(Calc2); /* hook the v-pointer to the Calc2 v-table */
 18 return me;
 19 }
 20
 21 QSTATE Calc2_operand2(Calc2 *me, QEvent const *e) {
 22 switch (e->sig) {
 23 case IDC_PERCENT:
 24 sscanf(me->super_.display_, "%lf", &me->super_.operand2_);
 25 switch (me->super_.operator_) {
 26 case IDC_PLUS:
 27 me->super_.operand2_ = 1.0 + me->super_.operand2_/100.0;
 28 me->super_.operator_ = IDC_MULT;
 29 break;
 30 case IDC_MINUS:
 31 me->super_.operand2_ = 1.0 - me->super_.operand2_/100.0;
 32 me->super_.operator_ = IDC_MULT;
 33 break;
 34 case IDC_MULT: /* intentionally fall through... */
 35 case IDC_DIVIDE:
 36 me->super_.operand2_ /= 100.0; /* x*y%, x/y% */
 37 break;
 38 default:
 39 ASSERT(0);
 40 }
 41 Q_TRAN(VPTR(Calc1, me)->result);
 42 return 0; /* event handled */
 43 }
 44 /* let Calc1 handle other events */
 45 return Calc1_operand2((Calc1 *)me, e);
 46 }

180 Chapter 6: Inheriting State Models
counterpart (refer to Listing 6.2). The only differences are in the polymorphic state
transition (line 41) and the delegation of unhandled events (line 45). Please note
that the delegation cannot be dynamic (an attempt to resolve the call via a v-
pointer ends up in endless recursion) and is analogous to the C++ delegation that
also uses a static, fully qualified delegation via a call to Calc1::operand2().

Exercise 6.5 Find the C version of the VC++ project qcalc2.dsp on the accompany-
ing CD-ROM and add an entry action to the Calc2_opearator2()
state handler (e.g., the action could invoke the Win32 function Beep()).
Rebuild the project and note that only the calc2.c module needs to be
recompiled. Launch the application and verify that your entry action is
indeed executed on entry to the operator2 state.

6.3 Caveats
In most cases, the inheritance of state machines works just fine right out of the
box, as demonstrated by the refined Quantum Calculator example. However,
problems might arise when you start using inheritance in a more advanced way.
This section explains some potential issues and workarounds.

6.3.1 Static versus Dynamic State Transitions

The techniques of inheritance and refinement (in both C++ and “C+”) work well
for Singletons [Gamma+ 95] — that is, with classes that allow only a single
instance in a system, such as in the Quantum Calculator example. In a more
general situation, however, you might want to have multiple instances of differ-
ent subclasses of a given reactive base class. In this case, the optimized transi-
tion handling (see Chapter 4) inhibits the fully polymorphic adaptation of the
baseline statechart.

For example, suppose you design a generic Controller reactive base class that
defines a high-level behavior (e.g., a power-on self-test, fail-safe state, etc). Subse-
quently, you subclass and specialize the generic Controller as ControllerA and
ControllerB. Finally, you instantiate a few of both Controller subclasses in your
system. The problem is that the optimized static transition QHsm::tranStat()
used inside the Q_TRAN() macro (Section 4.4.3 in Chapter 4) prevents the Con-
troller base class statechart from dynamically adapting to potentially conflicting
refinements introduced by ControllerA and ControllerB. The issue is that the
optimization relies on calculating the transition chain only once and storing it in a
static object (see Section 4.4.5 in Chapter 4). Obviously, this optimization defeats

Caveats 181
the flexibility needed for refinement via inheritance because you cannot store two
(or more) different transition chains in one static variable.

The solution is to forego optimization and recalculate the transition chain
dynamically (each time the transition fires) for every polymorphic transition requir-
ing the extra flexibility (e.g., the transitions in the Controller base class). The QHsm
class provides such a dynamic, unoptimized transition method — QHsm::tran()
(QHsmTran_() in C) — which you use through the Q_TRAN_DYN() macro.

Exercise 6.6 Replace all occurrences of the Q_TRAN() macro with Q_TRAN_DYN() in
the Calc1 base class. Recompile and execute the refined Calc2 applica-
tion. Verify that it operates as before.

6.3.2 Multiple Inheritance

The C++ implementation of the behavioral inheritance meta-pattern is not com-
patible with multiple inheritance (MI). The sidebar “C++ Pointer-to-Member Func-
tions and Multiple Inheritance” in Chapter 3 explains the reasons.

Note: Depending on the C++ compiler and the order of the multiple base
classes in the declaration, MI might also work with the behavioral
inheritance meta-pattern. The point is, the code is not portable.

It is possible to make the behavioral inheritance meta-pattern fully compatible with
MI. One such solution8 is to wrap the naked QState pointer-to-member function in a
“functor” class, CQState. The most important facilities of the CQState functor are
the redefined state handler signature QState and the function call operator().

8. I am grateful to Jeff Claar for contributing this solution. It is somewhat similar to the original GotW problem
#57 posted and solved on Usenet [Sutter 01].

class QHsm {
 class CQState { // CQState functor class
 public:
 typedef CQState (QHsm::*QState)(QEvent const *);
 CQState operator()(QHsm *hsm, QEvent const *e) {
 return hsm->callMemberFn(myPtMF, e, hsm);
 }

182 Chapter 6: Inheriting State Models
The callMemberFn() method that the functor invokes is declared as purely
virtual in the QHsm base class and subsequently must be overridden in every sub-
class of QHsm. The following macro automates the definition of this method in
each concrete subclass.

The body of callMemberFn() performs all the necessary pointer casting to
invoke the fn state handler on behalf of a correctly typed QHsm subclass. The
functor objects are only temporary objects generated by the return statement of
callMemberFn(). The additional overhead introduced by this technique is thus
limited to the polymorphic invocation of callMemberFn() and the pointer
manipulation inside this method. The function call operator of the functor, on the
other hand, should be in-lined and thus optimized to nothing.

Exercise 6.7 Find the MI-compatible version of the extended Quantum Calculator
code and add a second base class to the refined Calc2 class. Note that
every state machine class invokes Q_DEFINE_CALL_MEMBER_FN() and
passes its class name to the macro. Verify that the application compiles
and executes correctly.

6.3.3 Heuristics for Inheriting and

Refining Statecharts

You can use state machine inheritance for a variety of purposes, including reus-
ing implementations, constructing abstract state machines, organizing code, and
fostering consistent behavior (a consistent look and feel). The enhancement of the
Quantum Calculator demonstrates a little of all these benefits. It obviously illus-
trates heavy implementation reuse, but it also takes advantage of abstraction.
Inheritance brings better code organization to the calculator “product line”
because the different versions of the product (the simple and enhanced calcula-

 private:
 QState myPtMF; // encapsulated pointer-to-member function
 };
 . . .
};

#define Q_DEFINE_CALL_MEMBER_FN(class_) \
 virtual CQState callMemberFn(CQState::QState fn, \
 QEvent const *e, QHsm *hsm)\
 {\
 class_ *c = static_cast<class_*>(hsm); \
 return (c->*fn)(e); \
 }

Caveats 183
tors) are closely related. The resulting code is much smaller than it would be without
inheritance, and its maintenance is easier (e.g., fixing a bug in the simple version of
the product fixes it automatically in the more advanced version). Finally, inheritance
enforces a consistent look and feel across the product line because any changes prop-
agate automatically from base classes to the offspring (e.g., from Calc1 to Calc2).

However, to reap the benefits of inheritance, class taxonomies need to comply
with rules that have been proven by experience, such as the LSP. Generally, compli-
ance with the LSP is much harder to achieve in hierarchies of reactive classes than in
classes without state behavior. The following sections give you some ideas of how to
refine statecharts, starting with the most strict (and safe) category of refinements
through progressively more liberal (and more dangerous) ones. You should strive to
stay with the most strict category that accomplishes your goals. Of course, this dis-
cussion pertains only to single inheritance (see Section 6.3.2).

Template Method

The simplest — and safest — refinement of a reactive class is not to change state-
chart topology at all. However, you can still significantly change the behavior of
the subclasses by overriding actions and guards that the base class defines as vir-
tual methods. In this case, the reactive base class implements the invariant parts
of the behavior (the statechart topology) and leaves it up to subclasses to imple-
ment actions and guards that can vary. This is an example of the widely used
Template Method design pattern [Gamma+ 95]. In fact, reactive classes make
very good natural Template Methods.

The base class has a fine granularity of control over the statechart elements it
allows the subclasses to change. The base class can use C++ access control to
restrict access to certain methods, or it can refuse to declare certain actions and
guards virtual, which also effectively prohibits subclasses from overriding
them.

The enhanced Quantum Calculator code provides an example of this tech-
nique. For example, the actions clear(), insert(), negate(), and eval() are
all declared virtual in the Calc1 base class and can therefore be overridden by
the subclasses.

The technique is even more explicit in the C implementation because the Calc1
base class uses explicit dynamic binding to invoke the polymorphic actions. The fol-
lowing state handler for the result state illustrates the polymorphically invoked

184 Chapter 6: Inheriting State Models
protected method eval_. In contrast, Calc1DispState() is resolved statically
because there’s no intention to override it.

Subtyping

The refinement policy for subtyping restricts statechart modifications to only
those that preserve pre- and postconditions of the base class for all events that it
accepts, which guarantees the substitutability of subclasses for the superclass.

Because both states and transitions realize the pre- and postconditions for
events in a state machine, this policy prohibits removing states and transitions.
You can freely add new states and transitions, but you can refine existing states
and existing transitions, guards, and actions only as follows [OMG 01].
• You can refine a state by adding new outgoing transitions as well as new sub-

states.
• You can refine an outgoing transition to target a direct or transitive substate of

the original target state (i.e., the transition can penetrate deeper into the state
hierarchy, but it still has to enter the original target state). This refinement
guarantees the postcondition established by entry to the original target state.

• You can refine a guard only by strengthening the condition, which weakens
any preconditions necessary for the transition.

• You can refine an action sequence by prepending or appending new actions,
but you should not alter the original action sequence.
Refinement of the Quantum Calculator falls into the subtyping category. The

refined operand2 state acquired a new outgoing transition triggered by the PER-
CENT signal.

Strict Inheritance

Strict inheritance still requires that you only add new features or override exist-
ing features; you cannot delete any existing elements. You can alter existing stat-
echart elements as follows.

QState Calc1_result(Calc1 *me, QEvent const *e) {
 switch (e->sig) {
 case Q_ENTRY_SIG:
 Calc1DispState(me, "result");
 VCALL(Calc1, eval_, me)END_CALL;
 return 0;
 }
 return (QState)VPTR(Calc1, me)->ready;
}

Summary 185
• You can alter a transition to target a different state that is not necessarily
related (via behavioral inheritance) to the original target state. However, you
cannot change the source of the transition because this would correspond to
removing an outgoing transition from the original source state.

• You cannot change the superstate of any state (reparenting).
• You can change a guard to check a different condition that is not necessarily

related to the original.
• You can change an action sequence by dropping some of the original actions,

replacing them with others, or prepending or appending new actions. How-
ever, you should not alter the sequence of the original actions that remain
after the refinement.
Strict inheritance still preserves limited substitutability of subclasses for the

superclass. Although the refined behavior is no longer fully compatible, it is
often good enough when your objective is reuse of the implementation rather than
behavioral compatibility.

General Refinement

In most general cases, you may freely change states, transitions, guards, and
actions. You also may remove (or hide) features, which is sometimes called
reverse inheritance. However, this freedom will cost you compliance with the
LSP.

The behavioral inheritance meta-pattern allows all kinds of statechart modi-
fications, including most general refinements and the removal of features. For
example, you can achieve the effect of removing a state by redirecting all incom-
ing transitions away from it and by reparenting all its direct substates. Removing
a state transition is even easier. In the refined state handler, you simply return
zero for the unwanted transition, which means that the signal is handled but no
transition occurs.

6.4 Summary
The behavioral inheritance meta-pattern works correctly under traditional class
inheritance, which enables easy reuse and refinement of entire state models. The
form of reuse achievable in reactive classes is much higher than is available for
nonreactive classes because you inherit behavior in addition to inheriting struc-
ture.

The challenge in inheriting state machines is in preserving the numerous
associations among states in the inherited and refined state machine topology.

186 Chapter 6: Inheriting State Models
In C++, you enable inheritance of a state machine simply by declaring all its state
handlers virtual. Your C++ compiler takes care of the correct polymorphic behav-
ior of the whole statechart topology because the underlying pointer-to-virtual-mem-
ber functions act polymorphically. However, in the current C++ implementation, the
behavioral inheritance meta-pattern is incompatible with multiple inheritance.

In C, you must explicitly arrange for polymorphism by declaring and initializing
the virtual table for the reactive class and by dynamically resolving the reference to
each state handler (through the virtual pointer). In this chapter, I demonstrated how
to achieve this using “C+” — an OO extension to C (see Appendix A).

In rare occasions, when you anticipate instantiation of different reactive sub-
classes of a given base class in the same system, you need to be careful to use the
unoptimized dynamic transition Q_TRAN_DYN() macro in the shared statechart of
the base class instead of the optimized Q_TRAN() macro. In this case, the optimiza-
tion built into the Q_TRAN() macro inhibits the extra flexibility you need in the
shared state machine.

To achieve compliance with the LSP, you should restrict refinements you apply to
state machines. In general, you always can add new elements, but you should avoid
removing any existing states and transitions.

From a more abstract point of view, the unprecedented degree of reuse achievable
by inheriting entire state models results from the unification of Quantum Program-
ming (behavioral inheritance) with traditional object-oriented programming (class
inheritance).

PART II

PART II

QUANTUM FRAMEWORK

In Part I, I showed you how to implement and use the powerful concept of the hier-
archical state machine by instantiating the behavioral inheritance meta-pattern. This
meta-pattern intentionally provided only the passive event processor, which must be
driven externally to actually process events. In particular, the meta-pattern did not
include the standard elements traditionally associated with state machines, such as
an event queue, an event dispatcher, an execution context (thread), or timing ser-
vices. This separation of concerns occurs for at least two reasons. First, unlike the
generic event processor, the other elements necessary to execute a state machine
depend heavily on the application domain and operating system support. Second, in
many cases, these elements are already available. For example, GUI systems such as
Microsoft Windows offer a complete event-driven environment for executing passive
state machines.

However, the majority of reactive systems, most notably embedded real-time sys-
tems, do not provide such an execution infrastructure. In Part II of this book, I
describe the Quantum Framework — an event-driven architecture for executing state
machines tailored specifically for embedded real-time systems. A real-time frame-
work similar to the Quantum Framework is at the heart of virtually every commer-
cial design-automation tool capable of generating real-time code. In fact, most of
these real-time frameworks are based on the model of concurrent state machines that
communicate with each other by sending and receiving events. In Part II, I conclude
187

188 PART II: QUANTUM FRAMEWORK
the mission of this book, which is to present a complete solution for programming
real-time systems with UML statecharts. The Quantum Framework combined with a
preemptive real-time operating system will give you the functional equivalent of a
code-synthesizing tool for developing real-time applications.

7

Chapter 7

Introducing the Quantum

Framework

Today I am more convinced than ever.
Conceptual integrity is central to product quality.
— Frederick P. Brooks, Jr.

State machines cannot operate in a vacuum. Apart from the event processor (sup-
plied by the behavioral inheritance meta-pattern), the execution environment for a
state machine must provide, at a minimum, the execution context (thread) and the
event queuing, event dispatching, and timing services. These elements strongly
depend on application domain and operating system support. However, within a
given domain, they change little from system to system, and their sufficiently robust
representations can be reused in many applications, rather than being developed
from scratch each time. For example, you could reuse an event queue or a timeout
event generator across many projects. However, you can do even better than merely
reuse specific elements as building blocks — you can reuse the whole infrastructure
surrounding state machines.
189

190 Chapter 7: Introducing the Quantum Framework
In this chapter, I introduce such a reusable infrastructure for the specific
domain of embedded real-time systems. This infrastructure is an example of an
application framework that I call the Quantum Framework (QF). The QF, like
any application framework, is a set of cooperating classes that makes up a reus-
able design for a specific problem domain (embedded real-time systems in this
case). The QF captures the overall architecture for executing concurrent state
machines in the embedded real-time environment.

Reuse on this level leads to inversion of control between your application and the
infrastructure on which it is based. When you use a class library (such as the behav-
ioral inheritance meta-pattern), you write the main body of the application and call
the code you want to reuse (e.g., the QHsm::dispatch() method on behalf of a par-
ticular state machine object). When you use a framework (such as the QF), you reuse
the main body and write the code it calls.

You can view a framework as an application skeleton that you need to flesh out to
create a complete application. You achieve this by attaching your code to the frame-
work’s specifically designed “extension points.” You typically customize the frame-
work’s behavior by extending classes defined inside the framework. In addition,
virtually every framework also incorporates a compatible class library that you can
use as a toolkit of components. In this sense, the behavioral inheritance meta-pattern
(a toolkit of elements for constructing HSMs) is part of the QF.

The main element of decomposition in the QF is an active object. An active object
(also known as an actor) is a state machine object that executes concurrently with
other active objects and communicates with them by sending and receiving events.
This concept is not new (see the sidebar “From Actors to Active Objects”). Today,
virtually every CASE tool that enables code synthesis for embedded real-time systems
incorporates a variant of an actor-based framework. Real-time object-oriented mod-
eling (ROOM) calls such a framework the “ROOM virtual machine” [Selic+ 94]. A
visualSTATE tool from IAR Systems calls it a “visualSTATE engine” [IAR 00]. A
UML-compliant design automation tool from I-Logix, Rhapsody, calls it an Object
Execution Framework (OXF) [Douglass 99].

The QF is a minimal implementation of an active object–based framework with
goals similar to the ROOM virtual machine or Rhapsody’s OXF. However, unlike
the frameworks buried inside CASE tools, the QF is not concerned with facilities for
animation or instrumentation of state machines and is not biased toward mechanical
code generation. Furthermore, it does not support such advanced, but expensive, fea-
tures as recursive decomposition of active objects, synchronous communications,
multiple active object interfaces, or protocols that restrict certain message types from
leaving and entering an active object. The QF implements only the most basic active
object–based computing model limited to asynchronous event exchange among
active objects in a single level of decomposition.

Conventional Approach to Multithreading 191
The most important characteristic of an active object is its opaque encapsulation
shell, which strictly separates the internal structure of an active object from the
external environment. The only objects capable of penetrating this shell, both from
the outside and from the inside, are event instances. This communication model
requires specifically designed intermediate objects (event instances) to carry out all
interactions.

7.1 Conventional Approach to Multithreading
Why introduce such severe restrictions on active object communications instead of
simply calling methods or communicating through shared variables? The short
answer is that the active object–based computing model better addresses the problems
associated with concurrency that are found in any multithreading system. To under-
stand why, consider the problems resulting from a conventional approach to multi-
threading.

7.1.1 Dining Philosophers — Conventional Approach

The classic “dining philosophers” problem posed by Edsger Dijkstra [Dijkstra, 71]
illustrates the basic challenges of multithreading. As shown in Figure 7.1, five philos-
ophers are gathered around a table with a big plate of spaghetti in the middle. The
spaghetti is so slippery that a philosopher needs two forks to eat it. Between each
philosopher is a fork. The life of a philosopher consists of alternate periods of think-
ing and eating. When a philosopher wants to eat, he tries to acquire forks. If success-
ful in acquiring two forks, he eats for a while, then puts down the forks and

From Actors to Active Objects

The concept of autonomous software objects communicating by message passing dates
back to the late 1970s, when Carl Hewitt and colleagues [Hewitt 73] developed
the notion of an actor. In the 1980s, actors were all the rage within the distributed
artificial intelligence community, much as agents are today. In the 1990s, meth-
odologies like ROOM [Selic+ 94], adapted actors for real-time computing. More
recently, the UML specification has introduced the concept of active object that is
essentially synonymous with the notion of an actor [OMG 01]. Active objects in the
UML specification are the roots of threads of control in multitasking systems and
engage one another asynchronously via events. The UML specification further
proposes the UML variant of statecharts, with which to model the behavior of
event-driven active objects.

In Quantum Programming (QP), I will use the UML term “active object,” rather
than the more compact “actor,” to avoid confusion with the other meaning of the term
“actor” that the UML specification uses in the context of use cases.

192 Chapter 7: Introducing the Quantum Framework
continues to think. (An alternative oriental version replaces spaghetti with rice and
forks with chopsticks.) The key question is: Can you write a program for each phi-
losopher that never gets stuck?

Although mostly academic, the problem is motivated by the practical issue of how
to assign resources to processes that need the resources to do their jobs; in other
words, how do you manage resource allocation. The idea is that a finite set of
threads is sharing a finite set of resources, and each resource can be used by only one
thread at a time.

Figure 7.1 Dining philosophers

Dining philosophers provide an interesting exercise in controlling what would
otherwise be an anarchic group of philosophers all trying to eat at once. The funda-
mental problem is synchronizing access to the forks.

In the simplest (and most naïve) solution, the philosopher threads might synchro-
nize access to the forks using shared memory. To acquire a fork, a philosopher would
need to test the corresponding shared flag and proceed only if the flag is cleared.
After acquiring the fork, the philosopher would immediately set the corresponding
flag to indicate that the fork is in use. However, this solution has a fundamental flaw.
If philosopher A preempts philosopher B just after philosopher B acquires a fork but
before the flag has been set, then philosopher A could incorrectly acquire the fork
that philosopher B already has (the corresponding flag is still cleared). This situation
is called a race condition. It occurs whenever one thread gets ahead of another in
accessing shared data that is changing.

Clearly, the philosopher threads need some method to protect the shared flags,
such that access to the flags is mutually exclusive, meaning only one philosopher
thread at a time can test and potentially set a shared flag. There are many methods of
obtaining exclusive access to shared resources, such as disabling interrupts, perform-

Conventional Approach to Multithreading 193
ing indivisible test-and-set operations, disabling task switching, and locking
resources with semaphores (see Sidebar “Dijkstra's Semaphores”). The solution
based on semaphores is, in this case, the most appealing because it simultaneously
addresses the problems of mutual exclusion and blocking the philosopher threads if
forks are unavailable. Listing 7.1 shows a simple semaphore-based implementation.

Listing 7.1 Simple (and incorrect) solution to the dining philosophers problem

implemented with Win32 API. The explicit fork flags are superfluous in

this solution because they are replaced by the internal counters of the

mutexes

Dijkstra's Semaphores

In 1965, Edsger Dijkstra invented semaphores as a protocol mechanism for synchro-
nizing concurrent threads [Dijkstra 65]. Dijkstra defined two primitive operations on
semaphores: P() (from Dutch “proberen”—test) and V() (from Dutch “verho-
gen”—increment). To obtain a semaphore a thread invoks the P() operation on the
semaphore, which returns only if the semaphore is available; otherwise the calling
thread blocks and waits for the semaphore. The V() operation releases the lock and
frees the semaphore to other threads.

Typically, mutlitasking operating systems provide an assortment of semaphores
optimized for different functions. The classical counting semaphore maintains the
lock counter and is optimized for guarding multiple instances of a resource. A special
case of counting semaphore is the binary semaphore, which can be locked by only one
thread at a time. A mutex semaphore (or simply mutex) is optimized for problems
inherent in mutual exclusion.

 1 enum { N = 5}; // number of dining philosophers
 2 static HANDLE fork[N]; // model forks as mutex semaphores
 3
 4 void think(long n) {. . . } // called when philosopher n thinks
 5 void eat(long n) { . . . } // called when philosopher n eats
 6
 7 long WINAPI philosopher(long n) { // task for philosopher n
 8 for (;;) { // philosopher task runs forever
 9 think(n); // first the philosopher thinks for a while
 10 // after thinking the philosopher becomes hungry...
 11 WaitForSingleObject(fork[(n+1)%N], INFINITE); // get left fork
 12 WaitForSingleObject(fork[n], INFINITE); // get right fork
 13 eat(n); // got both forks, can eat for a while
 14 ReleaseMutex(fork[(n+1)%N]); // release left fork
 15 ReleaseMutex(fork[n]); // release right fork
 16 }
 17 return 0;
 18 }

194 Chapter 7: Introducing the Quantum Framework
The solution from Listing 7.1 still has a major flaw. Your program might run for a
few milliseconds or for a year (just as the first naïve solution did), but at any
moment, it can freeze with all philosophers holding their left fork (Listing 7.1, line
12). If this happens, nobody gets to eat — ever. This condition of indefinite circular
blocking on resources is called deadlock.

Exercise 7.1 Execute the dining philosophers example from Listing 7.1. Name at least
three factors that affect the probability of a deadlock. Modify the code to
increase this probability. After the system (dead)locks, use the debugger
to inspect the state of the forks and the philosopher threads.

Once you realize the possibility of a deadlock (which generally is not trivial), be
careful how you attempt to prevent it. For example, a philosopher can pick up the
left fork; then if the right fork isn’t available for a given time, put the left fork down,
wait, and try again (this is a big problem if all philosophers wait the same amount of
time — you get the same failure mode as before, but repeated). Even if each philoso-
pher waits a random time, an unlucky philosopher could starve (never get to eat).
Starvation is only one extreme example of the more general problem of nondeter-
minism because it is virtually impossible to know in advance the maximum time a
philosopher might spend waiting for forks (or how long a philosopher thread is pre-
empted in a preemptive multitasking system).

Any attempt to prevent race conditions, deadlock, and starvation can cause other,
more subtle, problems associated with fairness and suboptimal system utilization. For
example, to avoid starvation, you might require that all philosophers acquire a sema-
phore before picking up a fork. This requirement guarantees that no philosopher
starves, but limits parallelism dramatically (poor system utilization). It is also difficult
to prove that any given solution is fair and does not favor some philosophers at the
expense of others.

The main lesson of dining philosophers is that multithreaded programming is
much harder than sequential programming, especially if you use a conventional
approach to multithreading. The conventional design requires a deep understanding
of the time domain and operating system mechanisms for interthread synchroniza-
tion and communication, such as various kinds of semaphores, monitors, critical sec-
tions, condition variables, signals, message queues, mailboxes, and so on.
Unfortunately, programmers typically vastly underestimate the skills needed to pro-
gram with operating system primitives and therefore underestimate the true costs of
their use. The truth is that only a relatively limited group of systems programmers is
familiar with and comfortable using these mechanisms properly. The majority of us
are likely to introduce subtle bugs that are notoriously hard to reproduce, isolate,
and fix.

Conventional Approach to Multithreading 195
7.1.2 Therac-25 Story

The problems associated with multithreading are not just academic. Perhaps the
most publicized real-life example of the “free threading” approach to concurrent
event-driven software is the Therac-25 story. Between June 1985 and January 1987,
a computer-controlled radiation therapy machine called the Therac-25 massively
overdosed six people. These accidents have been described as the worst in the 35-
year history of medical accelerators [Leveson 95]. To attribute software failure as the
single cause of the accidents is a serious mistake and an oversimplification. However,
the Therac-25 story provides an example of an inherently unsafe and practically
unfixable software design that resulted mostly from the (still widely applied) free
threading approach to concurrency.

The detailed analysis1 revealed that the ultimate root causes of all the accidents
were various race conditions within the Therac-25 software. For example, one such
race condition occurred between the processes of setting up the bending magnets in
preparation for treatment and accepting treatment data from the console. If a skillful
operator could enter all the required data within about eight seconds (the time
needed to set up the magnets), then occasionally the machine could end up in an

Therac-25 Fatal Incident

On Friday, April 11, 1986, a male patient was scheduled to receive an electron beam
treatment from the Therac-25 radiation therapy machine, one of the first fully com-
puter-controlled medical accelerators, at the East Texas Cancer Center. Within a few
seconds after the operator turned on the beam, the machine shut down, making a loud
noise. The display showed the cryptic message MALFUNCTION 54. The operator
rushed into the treatment room, hearing her patient moan for help. The patient began
to remove the tape that had held his head in position and said something was wrong.
She asked him what he felt, and he replied, “fire” on the side of his face. She immedi-
ately went to the hospital physicist and told him that another patient appeared to have
been burned. Asked by the physicist to describe what had happened, the patient
explained that something had hit him on the side of the face, he saw a flash of light,
and he heard a sizzling sound reminiscent of frying eggs. He was very agitated and
asked, “What happened to me, what happened to me?”

This patient died from the overdose on May 1, 1986, three weeks after the acci-
dent. He had disorientation, which progressed to coma, fever to 104°F, and neurologi-
cal damage. An autopsy showed an acute high-dose radiation injury to the right
temporal lobe of the brain and the brain stem [Leveson+ 93].

1. Nancy Leveson performed such an analysis in Safeware: System Safety and Computers [Levenson 95].

196 Chapter 7: Introducing the Quantum Framework
inconsistent configuration (partially set for X-ray treatment and partially set for elec-
tron treatment). These exact conditions occurred on April 11, 1986, when the
machine killed a patient (see the sidebar “Therac-25 Fatal Incident”).

Although the Therac-25 software was developed almost three decades ago2 and
was written in PDP-11 assembly language, it bears many similarities to the Visual
Basic Calculator example discussed in Chapter 1. Both applications are similar, in
that they do not maintain a crisp notion of mode of operation but, rather, represent
modes of operation as a multitude of variables and flags. These variables and flags
are set, cleared, and tested in complex expressions scattered throughout the code so
that it is virtually impossible to determine the mode of the system at any given time.
As demonstrated by the Visual Basic Calculator, this approach leads to subtle bugs in
an application of even a few hundred lines of code. The Therac-25 case, however,
shows that, when additionally compounded with concurrency issues, the ad hoc
approach leads to disastrous, virtually uncorrectable designs. For example, in an
attempt to fix the Therac-25 race condition described earlier, the manufacturer
(Atomic Energy of Canada Limited) introduced another shared variable controlled
by the keyboard handler task that indicated whether the cursor was positioned on
the command line. If this variable was set, then the prescription entry was considered
still in progress and the value of the Tphase state variable was left unchanged. The
following items point out some inherently nasty characteristics of such ad hoc solu-
tions.
• Any individual inconsistency in configuration seems to be fixable by introducing

yet another mode-related (extended state) variable.
• Every new extended state variable introduces more opportunities for inconsisten-

cies in the configuration of the system. Additionally, if the variable is shared
among different threads (or interrupts), it can introduce new race conditions.

• Every such change perpetuates the bad design further3 and makes it exponentially
more difficult (expensive) to extend and fix, although there is never a clear indica-
tion when the code becomes unfixable (prohibitively expensive to fix).

• It is practically impossible to know when all inconsistent configurations and race
conditions are removed. In fact, most of the time during computations, the config-
uration is inconsistent, but you generally won’t know whether it happens during
the time windows open for race conditions.

• No amount of testing can detect all inconsistencies and timing windows for race
conditions.

2. The Therac-25 software has been reused from earlier versions of the Therac machine.
3. This process is otherwise known as architectural decay.

Computing Model of the QF 197
• Any change in the system can affect the timing and practically invalidate most of
the testing.
You might think that the Therac-25 story, albeit interesting, is no longer relevant

to contemporary software practices. This has not been my experience. Unfortunately,
the architectural decay mechanisms just recounted still apply today, almost exactly as
they did three decades ago. The modes of architectural decay haven’t changed much
because they are characteristics of the still widely practiced bottom-up approach to
designing reactive systems mixed with the conventional approach to concurrency.

7.2 Computing Model of the QF
For the reasons just listed and others, operating systems designers have been
gravitating toward microkernel architectures. A microkernel operating system
(e.g., ChorusOS4 or QNX Neutrino5) is built on top of a small nucleus by adding
lightweight concurrent components that communicate among themselves and
their application-level clients through message passing.

The message-passing (event exchange) paradigm applied to the realm of objects
naturally yields the notion of active objects: concurrently executing, event-driven
objects endowed with a light-weight thread of control. In the QF computing model,
an application consists of a set of functionally specialized active objects (each embed-
ding a statechart) that collectively deliver the intended functionality. Active objects
do not share any data, and the only means of communication among them is the
exchange of event instances.

7.2.1 Active Object–Based Multithreading

Active object–based multithreading can achieve the following benefits.
• Atomic event processing. Active objects process one event at a time using RTC

semantics. As discussed in Chapter 2, discrete and indivisible RTC steps inher-
ently preclude internal concurrency issues. Although it is certainly true that oper-
ating system mechanisms, such as critical sections and message queues, serve in
the construction of an active object–based framework, application programmers
do not need to use these often-troublesome mechanisms directly. Programmers
can implement the internal structure of an active object without concern for mul-
tithreading. For example, application programmers don’t need to know how to
use a semaphore or even know what it is. Still, as long as active objects are inde-
pendent (do not share any data or resources), an active object–based system can

4. To learn more about ChorusOS you can visit the Web site: http://www.sun.com/software/chorusos
5. To learn more about QNX Neutrino microkernel architecture you can visit the Web site:

http://www.qnx.com/literature/nto_sysarch/kernel3.html

198 Chapter 7: Introducing the Quantum Framework
reap all the benefits of multithreading. Active objects, executing in separate
threads of control, can freely preempt each other, thereby achieving good respon-
siveness and optimal use of the CPU.

• Asynchronous event exchange. An active object can view all event exchanges with
its peers as occurring asynchronously. A target active object automatically queues
the incoming events when it is busy, without involving the application program-
mer. Avoiding deadlocks in this way leads to “frictionless” execution with mini-
mal blocking. Blocking can still occur, for example, in active objects that
encapsulate I/O devices, but overall, an active object–based system is much more
deterministic than an equivalent free-threaded system.

• Scalability. New active objects can be added with a minimal effect on other active
objects because they are loosely coupled, in contrast to free threading, in which
any change can cause dramatic ripple effects.

• Observability, controllability, and testability. A running application built of active
objects is a highly structured affair. You can gain insight into the system by moni-
toring event exchanges and active object states and their event queues, which all
are under the control of an active object–based framework (such as the QF).
From these observations, you easily can produce sequence diagrams and execu-
tion traces for individual active objects. Finally, an active object is a natural entity
for unit testing, which you can perform easily by injecting events into the active
object and observing its state machine.

• “Thin wire” style of communication. Because active objects do not share data and
communicate only through event instances, they do not need to execute in the
same address space. This uniquely qualifies the active object–based computing
model for the construction of highly parallel multiprocessor applications, includ-
ing distributed systems that communicate via networks.

• Encapsulation of legacy systems. Active objects lend themselves well to encapsu-
lation of legacy subsystems by providing an opaque shell around them.6 Because
the internal structure of an active object doesn’t need to be concerned with con-
currency issues, even subsystems designed for single threading can be encapsu-
lated. In many cases, an “actorized” subsystem can be turned from a heavyweight
process into a lightweight thread, or from a passive into an active subsystem. For
example, an active object encapsulating an I/O device might actively source the
incoming data packets in the form of events. Such an active I/O subsystem is
much easier to use than a blocking I/O.

6. Active objects are ideal Facades (see the Facade design pattern in Gamma and colleagues [Gamma+ 95].)

Computing Model of the QF 199
The benefits of active object–based computing materialize only in correctly
designed (loosely coupled) active object systems. Achieving this kind of design is not
always easy and occasionally introduces complications (e.g., repetition of informa-
tion). Moreover, active object–based systems have their own pitfalls — for example,
problems caused by overflowing event queues. However, these concerns are relatively
easy to resolve and the resulting active object–based systems are much safer, come
together more rapidly, and are easier to maintain than alternative designs based on
free threading.

7.2.2 Quantum Analogy

The model of interaction based on intermediate communication artifacts (events) is
neither new nor specific to software. For example, modern quantum field theory first
formulated in the 1930s postulates such a mechanism for all fundamental interac-
tions in nature (see the sidebar “Particle Interaction in Quantum Field Theory”).
With the introduction of the active object–based computing model, software engi-
neering seems to follow exactly the developments that occurred in physics three
quarters of a century earlier.

In classical physics, which can be compared to traditional OOP, particles interact
via continuous fields. For example, according to Newton’s law of universal gravita-
tion, every massive object of mass M is surrounded by a continuous force field
f(m, r). Any other object of mass m and relative distance r with respect to the object
M experiences the force given by f(m, r) = GMm/r2. This interaction model corre-
sponds in programming to direct method invocation: objects interact by invoking
methods such as the f(m, r) “method.”

Figure 7.2 (a) Electron juggling a virtual photon;

(b) electrons repel by exchanging a virtual photon

In contrast, all interactions result from particle exchange in quantum field theory.
Nature seems to have “invented” specific objects (intermediate vector bosons7),

e—

g

e—time

A

B

e—

g

A
B

(a) (b)

7. Intermediate vector bosons include photons mediating electromagnetic interactions, gluons mediating strong
interactions, and bosons W and Z mediating weak interactions.

200 Chapter 7: Introducing the Quantum Framework
whose primary function it is to mediate interactions. The mediating particles are spe-
cial (quantum theory calls them virtual), in that they cannot exist without the inter-
acting objects. In fact, they exist only briefly and disappear as soon as interaction
takes place. This more fundamental and accurate model of interaction corresponds
to active object–based computing.

The quantum mechanical model immediately explains why interactions can prop-
agate, at most, at the speed of light, whereas the classical interpretation leads to
incorrect instantaneous interactions. Incorporating signal propagation delays in the
software model becomes increasingly important. With skyrocketing clock speeds in
modern electronic devices, it becomes more and more difficult to hide signal
latencies from the software. Through the quantum analogy, QP proposes to
expose these latencies to programmers, instead of hiding them, as the conven-
tional approach to concurrency does.

Particle Interaction in Quantum Field Theory

In Maxwell’s theory of electromagnetism, charged particles such as electrons interact
through their electromagnetic fields. However, for many years, it was difficult to con-
ceive of how such an action between charges at a distance could come about; that is,
how can charged particles interact without some tangible connection? In quantum
field theory, such a tangible connection exists: all the forces of nature are a result of
particle exchange. First, consider the event taking place at point A in Figure 7.2a. An
electron emits a photon (the quantum of the electromagnetic field) and, as a result,
recoils in order to conserve momentum. It is clearly impossible to conserve energy as
well, so the emitted photon is definitely not a real photon. It is a photon with not quite
the right energy; physicists call it a “virtual” photon. An electron can nevertheless emit
such a photon as long as it is sufficiently quickly reabsorbed. Because of the uncer-
tainty inherent in quantum mechanics, the photon can live for time ∆t ≤ (h–/∆E), where
∆E is a “borrowed” or missing energy. However, suppose that instead of being reab-
sorbed by the same electron (as in point B of Figure 7.2a), the photon is absorbed by
another electron (as in Figure 7.2b). The latter electron recoils in the act of absorbing
the virtual photon at point B. The net result is a repulsive force between the two elec-
trons. In quantum field theory, such exchanges are responsible for Coulomb repulsion
of like charges [Halzen+ 84].

The exchanged virtual photons are, in other respects, different from freely propa-
gating real photons encountered in, for example, radio transmission. Virtual photons
cannot exist without the charges that emit or absorb them. They can only travel a dis-
tance allowed by the uncertainty principle, c∆t, where c is the velocity of light.

Physicists represent the interactions of quantum particles by Feynman diagrams,
like the one shown in Figure 7.2. Feynman diagrams correspond directly to sequence
diagrams in software.

Computing Model of the QF 201
7.2.3 Publish–Subscribe Event Delivery

The active object–based computing model encourages breaking up applications into
sets of functionally specialized active objects that communicate through asynchro-
nous event exchanges. The central design decision that makes or breaks any active
object–based framework is the choice of the mechanism for passing event instances
from producers to consumers.

The simplest mechanism lets active objects send events to each other directly. This
method requires minimal participation from the framework. However, it requires
that active objects intimately “know” each other. The “knowledge” that a sender
object needs to communicate is more than merely having a pointer or a reference to a
peer object — the sender must also know the kind of events the particular peer might
be interested in.8 This intimate knowledge, distributed among all participating active
objects, makes the system difficult to modify and extend. For example, it might be
difficult to add new active objects because existing active objects won’t know about
the newcomers and won’t send them events.

To find a better communication mechanism, you could turn to the quantum anal-
ogy and investigate how nature has solved this problem. Indeed, quantum field the-
ory reveals a different model of interaction among elementary particles. In the
quantum picture, an electron, such as that in Figure 7.2a, constantly juggles virtual
photons, regardless of the presence of other particles in the vicinity.9 However, just
being close to the electron does not guarantee that other particles will interact with
it. For example, a neutrino can be very close to an electron yet they might not inter-
act because the neutrino is not “tuned” to photons (cannot absorb them). The neu-
trino is “interested” in other events, such as the emission of virtual bosons W or Z,
which the electron also emits, but much less frequently.

The quantum model of interaction that the QF adopts consists of two elements:
(1) every elementary particle constantly “publishes” characteristic virtual quanta,
and (2) every particle “subscribes” to only a subset of virtual quanta published by
other particles. In other words, this is the well-known publish–subscribe interaction
model. The consequences of this model are as follows.

• Producers and consumers of events don’t need to know each other (loose
coupling).

• The types of events must be publicly known and must have the same
semantics for all parties.

8. An alternative is to blindly send every event to all active objects, which is wasteful and as inefficient as unsolic-
ited advertisement (junk mail).

9. This idea is central to all high-energy physics experiments. The experiments probe the “true nature” of elemen-
tary particles because they can reveal only those behaviors that happen spontaneously, regardless of whether
particles are observed or not. The objective of every experiment is to “catch” a particle doing something interest-
ing, but an experiment cannot induce any particular behavior that does not already exist.

202 Chapter 7: Introducing the Quantum Framework
• A mediator is required to accept published events and to deliver them to
interested subscribers.

• Many-to-many interactions (object-to-object) are replaced with one-to-
many (object-to-mediator) interactions.

The QF plays the central role of the mediator (the quantum vacuum). Upon ini-
tialization (e.g., in the initial transition), active objects subscribe to different event
types by the QF. Subsequently, they interact only with the QF by publishing event
instances, which the QF delivers to all subscribers. Architecturally, the QF combines
two design patterns. The QF itself is a Mediator, which mediates events to active
objects that act as Observers [Gamma+ 95].

7.2.4 General Structure

The high-level structure of the QF (shown in Figure 7.3) is typical for any active
object–based framework. The design is layered with a real-time operating system
(RTOS)10 that provides a foundation for multithreading and basic services like event
queues and memory pools. Based on these services, the QF supplies the QActive
base class to derive concrete active objects. QActive inherits from QHsm, which
means that active objects instantiate the behavioral inheritance meta-pattern. Addi-
tionally, QActive gives active objects a thread of execution and an event queue. An
application built from the QF extends the framework by subclassing QActive and
QEvent. The application uses QF communication and timing services through the
QF API; however, the application typically should not need to access the RTOS API
directly.

7.2.5 Dining Philosophers Revisited

Section 7.1.1 presented the conventional approach to the dining philosophers prob-
lem (DPP). In this section, I show you a design based on active objects and the QF.
The purpose of this discussion is to walk you quickly through the main points with-
out slowing you down with the full-blown details. In Chapter 10, I will come back to
this example for a closer look at specific QF features and concrete coding techniques.

Active object–based programming requires a paradigm shift from the conven-
tional approach to multithreading. Whereas in the conventional approach you
mostly think about shared resources and various synchronization mechanisms, in the
active object–based approach, you think about partitioning the problem into active
objects and about exchanging events among these objects. Your goal is to break up
the problem in a way that requires minimal communication. The generic design

10. For simpler designs, the QF can operate without an RTOS (effectively replacing it). See the discussion in Section
7.3.2 and a concrete implementation in Chapter 9.

Computing Model of the QF 203
strategy for handling shared resources is to encapsulate them inside a dedicated
active object and to let that object manage the shared resources for the rest of the
system (i.e., instead of sharing the resources directly, the rest of the application
shares the dedicated active object).

When you apply this strategy to the DPP (Figure 7.1), you will naturally arrive at
a dedicated active object to manage the forks (call it Table for this example). The
Table active object is responsible for coordinating Philosopher active objects to
resolve contentions over the forks. It’s also up to the Table active object to imple-
ment it fairly (or unfairly if you choose). A Philosopher active object needs to com-
municate two things to Table: (1) when it is hungry and (2) when it finishes eating.
Table needs to communicate only one thing to a hungry Philosopher: permission
to eat. The sequence diagram in Figure 7.4 shows two scenarios of possible event
exchange in the DPP. In the case of Philosopher n, Table can grant permission to
eat immediately. However, Philosopher m has to wait in the hungry state until
forks become available (e.g., two forks become free when Philosopher n is done
eating).

RTOS

Thread Queue
Memory

Pool

«framework»
QF

«active»
QActive

QHsm QEvent QTimer

QF Application

«active»
ActiveA

«active»
ActiveB

EvtBEvtA

Framework
API

RTOS
API

concrete
events

concrete
active
objects

Figure 7.3 UML package diagram illustrating relationships among the RTOS, the

QF, and the QF application

204 Chapter 7: Introducing the Quantum Framework
Figure 7.4 Sequence diagram showing event exchange in the active object–based

solution of the DPP

The class diagram in Figure 7.5 shows that the QF application comprises the
Table and Philosopher active objects and the specialized TableEvt class. This
diagram has a typical structure for an application derived from a framework.
Concrete application components (active objects and events in this case) derive
from framework base classes (from QActive and QEvent) and use other frame-
work classes as services. For example, every Philosopher has its own QTimer
(quantum timer) to keep track of time when it is thinking or eating.

Figure 7.5 Table and Philosopher active objects and the TableEvt class derived

from the QF base classes

:Tablen:Philosopherm:Philosopher:QF

HUNGRY(n)

TIMEOUT

TIMEOUT
EAT(n)

HUNGRY(m)

DONE(n)

EAT(m)

TIMEOUT

Table grants
permission to eat
immediately (free
forks are available)

Table does not
grant permission to
eat until some
forks are free

Timeouts
requested
to terminate
thinking

Timeout
requested
to terminate
eating

QF timers
generate
timeout events
requested by
Philosophers

thinking thinking

thinking

eating

eating

hungry

hungry

Philosopher()
initial()
thinking()
hungry()
eating()

myNum
myTimer

Philosopher

QTimer
1

QHsmQActive

Table()
- initial()
- serving()

myFork[N]
isHungry[N]

Table

QEvent

philNum

TableEvt

QF classes

state-handlers

myTimer

Computing Model of the QF 205
The Table and Philosopher active objects derive indirectly from QHsm, so they
are state machines. In fact, your main concern in building the application is elaborat-
ing their statecharts. Figure 7.6a shows the statechart associated with Table. It is
trivial because Table keeps track of the forks and hungry philosophers by means of
extended state variables (myFork[] and isHungry[] arrays, Figure 7.5), rather than
by its state machine.

The Philosopher state machine (Figure 7.6b) clearly shows the life cycle of this
active object consisting of states thinking, hungry, and eating. This statechart
publishes the HUNGRY event on entry to the hungry state and the DONE event on exit
from the eating state because this exactly reflects the semantics of these events. An
alternative approach — to publish these events from the corresponding TIMEOUT
transitions — would not guarantee the preservation of the semantics in potential
future modifications of the state machine.

Figure 7.6 (a) Table statechart and (b) Philosopher statechart; the ^DONE(n)

notation indicates propagation of the DONE event (publishing the

event)

Note that, externally, the active object–based solution makes no reference
whatsoever to the forks, only to the philosopher’s right to eat (refer to the
sequence diagram in Figure 7.4). Interestingly, Dijkstra [Dijkstra 71] proposed a sim-
ilar solution as the “most natural.” His formal analysis of the problem further
deduced a need for each philosopher to have an “I am hungry” state, in which the
philosopher would wait for permission to eat. Overall, Dijkstra’s solution has many
remarkable parallels to the active object–based design.
• Each philosopher life cycle goes through thinking, hungry, and eating

states (refer to the Philosopher statechart in Figure 7.6b).
• Each philosopher has a private semaphore on which to wait when hungry

(waiting on this semaphore corresponds to blocking the Philosopher thread
on the private event queue inherited from the QActive base class).

• A philosopher starts eating when in the hungry state and neither neighbor is
eating (in active object–based design, this is handled by Table; refer to the
handling of the HUNGRY event in Figure 7.4).

HUNGRY(n)/
DONE(n)/

serving
exit/^DONE(n)

eating

entry/^HUNGRY(n)

hungry

entry/

thinking

TIMEOUT

TIMEOUTEAT

(a) (b)

EXIT

206 Chapter 7: Introducing the Quantum Framework
• When a philosopher finishes eating, any hungry neighbor starts eating (in active
object–based design, this is handled by the Table active object; refer to the han-
dling of the DONE event in Figure 7.4)

7.3 Roles of the QF
The most obvious reason to use a software framework such as the QF is the faster
development of more robust applications. A framework frees you from making
many design decisions so that you, the application implementer, can concentrate on
the specifics of your application. However, benefits provided by the QF go further
than that. Some of the other characteristics of the QF could turn out to be even more
important for you than speedier software development. In the following sections, I
suggest other roles that the QF can play in your systems.

7.3.1 Source of Conceptual Integrity

Perhaps the most important contribution of application frameworks in general, and
the QF in particular, is the conceptual integrity that the derived applications receive
from the framework. The role of conceptual integrity is often underestimated. How-
ever, conceptual integrity is the single factor that distinguishes a clean, coherent, ele-
gant programming product from a poor, inefficient, awkward one. Products with
internal conceptual integrity are not only easier to use, but also easier to build, test,
maintain, and extend. As Frederic Brooks [Brooks 95] writes:

… conceptual integrity is the most important consideration in system design. It
is better to have a system omit certain anomalous features and improvements,
but reflect one set of design ideas, than to have one that contains many good
but independent and uncoordinated ideas.

One of the most powerful ways to foster conceptual integrity is to use an accurate
metaphor. Consider, for example, the desktop metaphor universally used in modern
GUIs. Through this metaphor, users find themselves immediately familiar with over-
lapped windows, cutting and pasting, or dragging and dropping because they already
know these concepts from the desktop environment.

The metaphor is not just valuable for users; it is invaluable for software design-
ers11 because it provides the most difficult part of the design: the conceptual model.
With such a model in hand, designers don’t need to invent potentially inconsistent
policies and behaviors — they can simply consult the real-life model to see how it

11. Inventing a metaphor is one of the key practices of eXtreme Programming (XP) [Beck 00].

Roles of the QF 207
solves various problems. The metaphor thus serves as an objective arbiter in resolv-
ing various design conflicts and ultimately guards the conceptual unity of the design.

In this context, the quantum mechanical analogy (metaphor) is the valuable con-
tribution of the QF, and QP, in general. As explained by means of the hydrogen atom
example in Chapter 2 and the virtual photon exchange example in this chapter, the
quantum metaphor consists of the following two elements.
• Reactive systems are analogous to quantum systems, in that they are always

found in strictly defined discrete states (quantum states) and can change their
state only by means of uninterruptible RTC steps (quantum leaps). The states are
naturally hierarchical and must comply with the Liskov Substitution Principle
(LSP) for states. Behavioral inheritance resulting from state nesting is fundamen-
tal because it expresses various symmetries within the system.

• The active object–based computing model is analogous to the quantum field the-
ory, in that the only interaction allowed among reactive objects (hierarchical state
machines) is the explicit exchange of event instances (intermediate virtual parti-
cles). The quantum model of interaction corresponds to the publish–subscribe
model in software.
Admittedly, the quantum metaphor is not as familiar to an average programmer

as the desktop metaphor. However, the physics background necessary to benefit from
this analogy doesn’t go beyond the level of popular science articles. Most impor-
tantly, the quantum metaphor is accurate for concurrent reactive systems.

7.3.2 RTOS Abstraction Layer

Whenever your application handles a variety of activities or manages multiple
devices, an RTOS can help you simplify the code by separating different tasks. An
RTOS is thus an important tool that allows you to divide and conquer [Ganssle 00].

For instance, consider the difficulty of building a global positioning system (GPS)
receiver. Without an RTOS, one monolithic hunk of code (often organized into a
“superloop”) would have to manage signal tracking loop closures, navigation data
collection, satellite orbital mechanics calculations, navigation solutions, and commu-
nications — all at the same time. An RTOS is a valuable tool because it allows you to
partition the code in the time domain (various activities perform concurrently) and in
the functional domain (each task handles one thing).

At its simplest level, an RTOS is just a context switcher plus some intertask syn-
chronization mechanisms. The context switcher allocates the CPU to various tasks
according to a scheduling algorithm. The tasks can therefore advance at different
paces, depending on how many CPU cycles they obtain. An RTOS also provides
mechanisms that allow the tasks to synchronize their activities. Examples of such
mechanisms include various types of semaphores, mailboxes, and message queues.

208 Chapter 7: Introducing the Quantum Framework
Although the basic services provided by RTOSs are very much the same, they are
accessible through significantly different APIs. This poses a serious problem for
many companies that want to deploy shared application code on different operating
systems or don’t want to lock their strategic applications into a particular operating
system. A common solution to this problem is to create a proprietary RTOS abstrac-
tion layer with the sole function of isolating the applications from RTOS differences.
Although such indirection layers aren’t complicated, they always incur some over-
head and add to the problem by introducing yet another proprietary RTOS API.12

An active object–based framework such as the QF offers a more elegant solution.
As mentioned earlier, applications derived from such a framework don’t need to use
low-level RTOS primitives directly — the framework effectively isolates applications
from the underlying RTOS; that is, changing the RTOS on which the framework is
built requires porting the framework code but does not affect applications. At the
same time, an active object–based framework is more than just a thin RTOS wrapper
because it directly supports active object–based multithreading, as opposed to tradi-
tional RTOSs that support only conventional multithreading.

If you use a proprietary homegrown RTOS or just have control over the RTOS
source code, you can consider integrating it with the QF into one entity. In fact,
RTOSs based on microkernel architecture are already very close to implementing an
active object–based framework like the QF. From my experience with several real-
time kernels for Motorola 68000, ARM, and ARM/THUMB microcontrollers, inte-
grating an RTOS into the QF is not more difficult than porting the framework to a
different operating system (porting the QF is discussed in Chapter 9). Interestingly,
because of the spareness of concepts used in the QF, the combined solution is typi-
cally smaller than the sum of its parts.

7.3.3 Software Bus

As the number of transistors available on a piece of silicon climbs exponentially
according to Moore’s Law (see the sidebar “Moore’s Law”), more of an electronic
system can be incorporated onto a single die. The advantages of higher hardware
integration include better system reliability, lower power consumption, smaller size,
and lower system cost. The increasingly important problem for the designer commu-
nity is not to lose these advantages again through the lack of software integration.

Consider, for example, a GPS navigation system. The heart of such a system is
a GPS receiver responsible for tracking satellite signals and performing naviga-
tion solutions. However, a GPS sensor alone is virtually useless unless it is inte-
grated with other components, such as a GUI, a mapping system, or a vehicle

12. For example, the Rhapsody CASE tool from I-Logix uses an RTOS abstraction layer called Abstract Operating
System [Douglass 99].

Roles of the QF 209
steering system. Although a GPS receiver typically has a powerful 32-bit micro-
controller on board that could easily accommodate additional functions,13 often a
closed software architecture forces the designers to implement additional functions
in separate hardware. Worse, both the GPS receiver and the extra hardware spend
significant resources on communications and are therefore more complex than neces-
sary for the job at hand. In other words, instead of an integrated single-processor
design, the system unnecessarily becomes a multiprocessor distributed system and
has to cope with all the headaches associated with distributed designs.14

The main reason it is not easy for designers to get different functions to share
the available hardware is the lack of a “software bus” that would enable tighter
software integration, much as hardware buses enable integration of hardware
components. Naturally, the concept of a software bus has been around for a long
time and has been realized in such software architectures as CORBA, DCOM, and
recently .NET. However, these heavy-weight architectures are designed for powerful
desktop and server platforms and are unsuitable for most embedded systems. They
also address a different need — integrating distributed systems communications over
networks.

However, many deeply embedded systems need a simpler, light-weight software
bus to integrate various software components efficiently within a single address
space. An active object–based framework, like the QF, provides such an open archi-
tecture as well as the API for integrating software components (active objects). If the
framework is based on a preemptive kernel, then adding active objects at a lower pri-
ority does not affect the timing of active objects running at a higher priority;15 thus,
it enables hard real-time functions to be integrated alongside soft real-time functions.

In the case of a GPS navigation system, an original equipment manufacturer
(OEM) of a GPS receiver can provide the hardware and extensible software, which
consists of high-priority active objects implementing the core GPS functions. These
core active objects can be provided in compiled form (e.g., as a class library) because

13. For example, many GPS receivers already have integrated LCD controllers for graphics applications or pulse-
width modulation hardware for vechile steering applications.

14. Refer, for example, to Selic [Selic 00] for discussion of challenges specific to distributed software designs.

Moore’s Law

In the 1960s, Gordon Moore [Moore 65] observed that Intel’s memory chips were
doubling in transistor count with every generation, and a new generation appeared
roughly every 18 months. Although Intel has since gotten out of the RAM commodity
business, Moore’s observation, which the press dubbed Moore’s Law, has been
remarkably accurate over the last few decades.

15. Active objects do not to share any resources and do not block each other.

210 Chapter 7: Introducing the Quantum Framework
the details of GPS signal tracking and interfacing to proprietary GPS correlator hard-
ware are typically among the most guarded trade secrets. The OEM does not have to
invent an API to open up the software architecture of the product (the QF already
provides such an API), so it can concentrate only on specifying and documenting
events (hooks) produced and consumed by the active objects with core functionality.
With this specification, third-party designers can use the framework API to integrate
additional functionality — such as graphics active objects for a mapping system —
without adding any extra hardware or layers of communication.16 The resulting
product is simpler, smaller, more reliable, less expensive and gets to market faster.

7.3.4 Platform for Highly Parallel Computing

The same forces that drive the integration of more and more of a system onto a
single die (System-on-Chip) also cause the trend toward putting multiple proces-
sors on a chip. For example, network processors integrate one or more RISC
(reduced instruction set computing) processors for control with multiple homoge-
neous or heterogeneous processing elements for data processing. However, devel-
oping multithreaded software to drive such processors is the biggest problem —
more severe than any of the hardware issues [Merritt 02].

To this end, the active object–based computing model is uniquely suitable for
highly parallel hardware. First, the natural breakdown of applications into
active objects maps directly to the distributed hardware. Second, the thin wire
style of communication among active objects is exactly how the processing ele-
ments communicate because they typically share a data bus rather than memory.
Finally, the high-bandwidth parallel processing performed in these devices is
reactive in nature (e.g., packet switching) and is a natural fit for the state
machine formalism.

All this makes active object–based application frameworks, such as the QF,
very attractive in this field. Although beyond the scope of this book, extending
the QF to span multiple address spaces should be relatively straightforward.
More importantly, such a distribution of processing should be almost transparent
to the application. Perhaps the most simplifying factor of application design is
that communications over data buses (unlike communications over lossy networks)
can be considered reliable, which for active objects translates into guaranteed event
delivery. As described in Section 8.4.2 in Chapter 8, such a guarantee vastly simpli-
fies any active object–based system because active objects often need to maintain
mutual consistency in their state.

16. One of the most complex aspects of a commercial GPS receiver is its support for various communications proto-
cols and formats.

Roles of the QF 211
Interestingly, the field of network processors has already attracted design
automation tool vendors, who offer visual state machine techniques capable of
automatic code generation for NPUs [Deshpande 01].

7.3.5 Basis for Automatic Code Generation

When you start using a framework such as the QF, you will notice that much of
the code is entirely prescribed by the framework. For example, much of the state
machine code resulting from instantiation of the behavioral inheritance meta-
pattern (an integral part of the QF) is just housekeeping code (see Chapter 1, Section
1.2.4) and lends itself to automation. Indeed, all code-synthesizing tools are based on
this observation, and virtually all use an application framework internally as the
underlying structure. Although automatic code synthesis is not the subject of this
book (and the QF does not provide it), it is worthwhile to understand and perhaps
demystify how most of the commercial CASE tools generate code and, in particular,
how they use underlying frameworks to facilitate automatic code synthesis.

As the first example of an automatic code generation tool, consider the appli-
cation wizard (AppWizard) supplied with Microsoft Visual C++. The wizard
relies entirely on the Microsoft Foundation Class (MFC) library, which is the
C++ framework for building applications for Microsoft Windows. The MFC App-
Wizard is a series of branching path steps in which you choose from the available
options. Behind the scenes, the wizard carries out exactly the same operations
you would perform to manually derive your application from the MFC frame-
work. These operations include subclassing and specializing the framework
classes, creating and naming framework components, setting attributes (proper-
ties), and invoking framework services (operations). For example, AppWizard
lets you choose between the single-document interface (SDI) or the multiple-doc-
ument interface (MDI). It then translates your choice by subclassing the main
application frame class from either CFrameWnd (SDI) or CMDIFrameWnd (MDI)
MFC classes. You also can choose whether you want to use the Document/View
architecture, which the wizard translates into an instantiation of Docu-
ment/View classes in your application. You can select the frame type for your
main application window, which the wizard translates as setting attributes of the
main window object. Finally, you can choose to support ActiveX controls, which
cause the AfxEnableControlContainer() invocation of service from the Init-
Instance() MFC method.

If you have not used the MFC AppWizard before, I encourage you to try it out.17

When you inspect the generated code, you will notice that the wizard is just a more
intelligent cut and paste tool, combined with a global find and replace that uses

17. Throughout this book, I assume that you have the Microsoft Visual C++ development suite.

212 Chapter 7: Introducing the Quantum Framework
identifiers of your choice rather than generic names. The wizard works by cutting
appropriate snippets of code from its internal templates and pasting them into your
application according to your preferences. The MFC framework facilitates this
approach by prescribing points of customization (framework extension points) and
providing much of the default behavior (which does not need generated code). If
your application falls into one of the supported categories, automatic code genera-
tion can give you a fast head start. However, you will be less lucky if some aspects of
your application lie off the beaten path. In all cases, the generated code is only an
empty skeleton without any specific behavior.

The automated cutting and pasting techniques found in the MFC AppWizard are
the simplest forms of code synthesis. CASE tools that support state machines add sig-
nificantly more advanced capabilities by generating code pertaining to the specific
behavior of the application. This code is almost universally based on the constructive
nature of statecharts, which means that statecharts have sufficiently precise seman-
tics to allow translating them to code. A typical CASE tool with these capabilities
resembles a specialized graphical editor for drawing state machines. The tool pro-
vides a palette of state machine components (states, transitions, pseudostates), which
you drop on the drawing pad and manipulate to construct the desired state machine
topology. Each of the state machine elements has an associated set of properties that
you can modify through specific dialog boxes. For example, properties of the transi-
tion component include a trigger, guard, and action. You supply the guard and
action by typing source code in a concrete programming language into the dialog
box (e.g., C, C++, or Java). Similarly, for the state component, you specify entry
actions, exit actions, and internal transitions, again by typing concrete code into the
state properties dialog box. The main contribution of the CASE tool is the ability
to generate housekeeping code from the graphically defined topology of the state
machine by instantiating a state machine pattern similar to the behavioral inherit-
ance meta-pattern of the QF. On the other hand, the tool merely cuts and pastes the
snippets of code you attached to state machine components via the dialog boxes.

7.4 Summary
In this chapter, I introduced the concept of the Quantum Framework (QF) — a
reusable infrastructure for executing concurrent state machines — which is an
application framework optimized for the embedded real-time systems domain.

The QF hinges on the active object–based computing model, in which concur-
rently executing state machine objects, called active objects, interact with one
another by exchanging event instances. This communication model offers many
advantages over the free threading approach, which poses many challenges, like
race conditions, deadlocks, starvation, and indeterminism, to name just a few. These

Summary 213
problems make concurrent programming incomparably more difficult than sequen-
tial programming and often lead to arcane, fragile designs that only a handful of
expert programmers of a particular system can understand, debug, and maintain.

By design, the active object–based approach avoids most of the problems
found in free threading solutions. Perhaps the most important characteristic of
active objects is their sequential internal structure (thanks to the RTC seman-
tics), which allows active object–based systems to be designed with purely
sequential techniques. At the same time, the system can achieve low latencies
and good CPU utilization, which are characteristics of good concurrent designs.

An active object–based framework such as the QF can play several important
roles in your projects. It can

• help achieve conceptual integrity through the quantum metaphor,
• serve as an RTOS abstraction layer (indeed, it can event replace an

RTOS),
• operate as a light-weight software bus,
• be extended to support highly parallel computing, and
• provide the basis for automated code synthesis.

214 Chapter 7: Introducing the Quantum Framework

8

Chapter 8

Design of the

Quantum Framework

The worst buildings are those whose budget was too great
for the purposes to be served.
— Frederick P. Brooks, Jr.

An active object–based framework, such as the Quantum Framework (QF), sits at the
focus of many conflicting forces that the framework must ultimately resolve in the
applications’ interest. The stakes are high because the applications are so dependent
on the framework that any wrong decision in its design or implementation could ren-
der the framework inadequate for whole classes of applications. Perhaps nowhere is
this more true than in the embedded real-time1 domain. For example, many embedded
systems are extremely cost sensitive, so the framework must be efficient in both mem-
ory and CPU utilization. Moreover, real-time systems are particularly intolerant to any
form of nondeterminism because it can cause the systems to miss deadlines and fail.

1. I intentionally use the terms “embedded” and “real-time” together because, in practice, almost all embedded
systems have real-time constraints.
215

216 Chapter 8: Design of the Quantum Framework
To be effective, the framework must take carefully into account the realities of the
application domain it serves. But what exactly are these realities? The embedded
software domain is so diverse and fragmented that it is necessary first to define the
subset of embedded real-time systems that the QF addresses. Furthermore, it is
important to investigate how embedded real-time systems differ from other com-
puter systems because, only then, will you understand the motivation for such
important QF policies as error and exception handling, memory management, con-
currency handling, event passing, initialization, cleanup, and time management.

Although the focus of this chapter is on the design of the framework, you will
also find concrete code for platform-independent components of the QF. In the next
chapter, I fill in the platform-dependent elements and explain how to port the QF to
different operating systems or to use it stand-alone, without an underlying multitask-
ing kernel.

Code fragments presented in this chapter pertain only to the C++ version of the
framework. The C version (available on the accompanying CD-ROM) is essentially
identical because it implements the same underlying design. Therefore, even if you
are only interested in the C version, you should study the C++ code and explanations
because they apply equally to the C implementation. If the idea of object-oriented
programming in a procedural language like C is new to you, please refer to Appen-
dix A, which describes a set of techniques and idioms that you can use to implement
classes, inheritance, and polymorphism in C.

8.1 Embedded Real-Time Systems
“Embedded” and “real-time” mean different things to different people. First, I need
to explanation what I mean by these terms so that you understand for which kind of
systems the QF might be applicable.

For the purpose of this discussion, an embedded real-time system has the follow-
ing two main characteristics.
1. It is a combination of computer hardware and software, with perhaps additional

mechanical and other parts, designed to perform a specific function [Barr 99].
2. It must respond to external events in a timely fashion, which means that for all

practical purposes, a late computation is just as bad as an outright wrong com-
putation.

Vague as it is, this definition can gain the most strength by contrasting embedded
real-time systems with general-purpose computer systems (such as desktop PCs), in
which the two main characteristics are either nonexistent or far less important. So,
you can read embedded to mean “not for general-purpose computing” and real-time
to mean “dedicated to an application with timeliness requirements.” Either way, the

Embedded Real-Time Systems 217
definition emphasizes that embedded systems pose different challenges and require
different programming strategies than general-purpose computers.

This distinction is important. Perhaps most (unnecessary) complications com-
monly introduced into embedded software have their roots in projecting require-
ments from the desktop onto the embedded real-time domain. I disagree with the
opinion that embedded real-time developers face all the challenges of “regular” soft-
ware development plus the complexities inherent in embedded real-time systems
[ObjecTime 97]. Although each domain has its fair share of difficulties, each also
offers unique opportunities for simplification, so embedded systems programmers
specifically do not have to cope with many problems encountered on the desktop.
Attempts to reconcile the conflicting requirements of both the desktop and the
embedded real-time domain can turn embedded real-time programming into a
daunting process,2 to be sure, but that just makes your job harder than it needs to
be.

Usually, an embedded system is a much better defined environment for program-
ming than a general-purpose computer because a typical embedded system has a

2. See the back cover of Doing Hard Time by Bruce Powel Douglass [Douglas 99].

Desktop-style Programming for Embedded Systems

Attempts to reconcile general-purpose computing with the embedded domain happen
quite often. For example, the recent (fading) hype around embedded Linux has been
motivated mostly by the rhetoric: “easy portability of application software and pro-
gramming skills from desktop Linux.” As columnist Niall Murphy [Murphy 00] of the
Embedded System Programming magazine observes:

The last time I heard similar logic was in the early stages of Windows CE
marketing. It was as bogus then as it is now. Desktop-style applications
can only be used in a tiny minority of embedded designs; admittedly, this
refers to large volume applications like set-top boxes. Sharing a skill set is
bogus too. The vast majority of embedded software developers have never
written a single program to the Unix API (nor the Win32 API, I might
add) and asking them to learn one of theses monsters in order to use an
RTOS embedded within it is putting a huge onus on the engineer. Will
programmers experienced in Linux on desktop machines now be able to
turn their hand to embedded systems programming? This would assume
that, apart from the knowledge of a particular API, there are no skills
necessary in the embedded domain that are not already known to desktop
programmers. This is simply not true.

218 Chapter 8: Design of the Quantum Framework
clear, single purpose in life. In contrast, a desktop system doesn’t have such a single
purpose — by definition, it must be able to accommodate many different functions at
different times or even simultaneously. As far as hardware is concerned, no desktop
application can rely on a specific amount of physical memory available to it or on
how many and what kind of disk drives and other peripherals are present and avail-
able at the moment. The software environment is even less predictable. Users fre-
quently install and remove applications from all possible sources. All the time, users
launch, close, or crash their applications — drastically changing the CPU load and
availability of memory and other resources. The desktop operating system has the
tough job of allocating CPU time, memory, and other resources among constantly
changing tasks in such a way that each receives a fair share of the resources and no
single task can hog the CPU. This scheme is diametrically opposed to the needs of an
embedded system, in which a specific task must gain control right now and run until
it produces the appropriate output. Fairness isn’t part of embedded real-time pro-
gramming — getting the job done is.

Over the last half century or so, the software community has concentrated mostly
on effective strategies to cope with the challenges of general-purpose computing. Per-
haps because of this long tradition, the resulting strategies and rules of thumb have
become so well established that programmers apply them without giving them a sec-
ond thought. Yet, the desktop solutions and rules of thumb are often inadequate (if
not outright harmful) for the vast majority of embedded real-time applications.

Programmers of embedded systems can be much more specific than programmers
of general-purpose computers, and specific solutions are always simpler and more
efficient than general ones. The following sections show several areas in which the
design of the QF enables you to take advantage of the specifics of embedded systems
programming and simplifies the implementation compared to traditional solutions
borrowed from the desktop. These areas include (1) handling errors and exceptional
conditions, (2) memory management, (3) passing events, (4) initialization and
cleanup, and (5) time management, which is pretty much everything there is to it!

8.2 Handling Errors and Exceptional Conditions
Handling errors and exceptional conditions offers perhaps the most opportunities
for simplifying embedded real-time code compared to general-purpose computer
software. Just think, how many times have you seen embedded designs terribly con-
voluted by attempts to painstakingly propagate an error through many layers of
code, just to end up doing something trivial with it, such as performing a system
reset (or worse, somehow sweeping the error under the rug).

By error (known otherwise as a bug), I mean a persistent defect due to a design or
implementation mistake. When your software has a bug, you should concentrate on

Handling Errors and Exceptional Conditions 219
finding and ultimately fixing it, rather than designing a recovery strategy. This situa-
tion is in contrast to the exceptional condition, which is a specific situation that can
legitimately arise during the system lifetime but is relatively rare and lies off the main
execution path of your software. In contrast to an error, you need to design and
implement a strategy that handles the exceptional condition.

Embedded systems offer many more opportunities than desktop applications to
flag a situation as a bug (that you should prevent from happening), rather than an
exceptional condition (that you must handle). Consider, for example, dynamic mem-
ory allocation (the next section discusses memory management in detail). In any type
of system, memory allocation through malloc() (or the C++ operator new) can fail.
On the desktop, a failed malloc() merely indicates that, at this moment, the operat-
ing system cannot supply the requested memory. In a highly dynamic general-pur-
pose computing environment, this can happen easily. When it happens, you have
options to recover from the situation. One option might be for the application to free
up some memory that it allocated and then retry the allocation. Another choice
could be to prompt the user that the problem exists and encourage her to exit other
applications so that the current application can gather more memory. Yet another
option is to save data to the disk and exit. Whatever the choice, handling the situa-
tion requires some drastic actions, which are clearly off the mainstream behavior of
your application. Nevertheless, you should design and implement such actions
because in a desktop application, a failed malloc() must be considered an excep-
tional condition.

In a typical embedded system, on the other hand, the same failed malloc() prob-
ably should be flagged as a bug.3 That’s because embedded systems offer much fewer
excuses to run out of memory, so when it happens, it’s typically an indication of a
flaw. You cannot really recover from it. Exiting other applications is not an option.
Neither is writing to a nonexistent disk. Whichever way you look at it, it’s a bug no
different from dereferencing a NULL pointer4 or overrunning an array index.5 Instead
of going out of your way in attempts to handle this condition in software (as you
would on the desktop), you should concentrate first on finding the root cause and
then fixing it (I would first look for a memory leak, wouldn’t you?).

The main point here is that many situations traditionally handled as exceptional
conditions on the desktop are in fact bugs in embedded systems. To handle various

3. Embedded systems span such a broad spectrum that there are examples where it makes sense to recover from a
failed malloc(). In such rare cases, you should treat it as an exceptional condition.

4. Thou shalt not follow a NULL pointer, for chaos and madness await thee at its end — the second command-
ment for C programmers by prophet Henry Spencer [Spencer 94].

5. Thou shalt check the array bounds of all strings (indeed, all arrays), for surely where thou typest ‘foo’ someone
someday shall type ‘supercalifragilisticexpialidocious’ — the fifth commandment for C programmers by
prophet Henry Spencer [Spencer 94].

220 Chapter 8: Design of the Quantum Framework
situations in your QF applications correctly, you should not blindly transfer rules of
thumb from other areas of programming to embedded real-time systems. Instead, I
propose that you critically ask the following two probing questions.
1. Can this rare situation legitimately happen in this system?
2. If it happens, is there anything specific that needs to or can be done in the soft-

ware?
If the answer to either of these questions is “yes,” then you should handle the situa-
tion as an exceptional condition; otherwise, you should treat the situation as an error.

The other important point is that errors require the exact opposite programming
strategy than exceptional conditions. The first priority in dealing with errors is to
facilitate finding them. Any attempt to handle a bug as an exceptional condition
results in unnecessary complications of the implementation and either camouflages
the bug or delays its manifestation. (In the worst case, it also introduces new bugs.)
Either way, finding and fixing the bug will be harder.

In the following section, I describe how the QF uses assertions to help catch bugs,
not so much in the framework, but mostly in applications derived from it. You
should extend the same basic strategy to your own code.

8.2.1 Design by Contract

An important aspect of the QF that you, as the framework client, need to under-
stand is the way it uses assertions. In this respect, the QF applies elements of the
Design by Contract6 (DBC) methodology pioneered by Bertrand Meyer [Meyer 97].
DBC views a software system as a set of components whose collaboration is based
on precisely defined specifications of mutual obligations — the contracts. The central
idea of this method is to inherently embed the contracts in the code and validate
them automatically at run time. Doing so consistently has two major benefits. (1) It
automatically helps catch bugs (which manifest themselves as contract violations).
(2) It is a great way to document code.

You can implement the most important aspects of DBC easily in C or C++ with
assertions [Kapp 00]. The standard library macro assert() is rarely applicable to
embedded systems, however, because its default behavior, when the boolean expres-
sion passed to the macro evaluates FALSE, is to print an error message and exit. Nei-
ther of these actions makes sense for most embedded systems, which rarely have a
screen to print to and cannot really exit either (at least not in the same sense as a
desktop application can). In an embedded environment, you usually have to define
your own implementation to suit the tools you are using or the error response that
fits your system [Murphy 01]. In the QF, I use assertions friendly to embedded sys-
tems that are defined in qassert.h.

6. Design by Contract is a trademark of Interactive Software Engineering.

Handling Errors and Exceptional Conditions 221
Listing 8.1 qassert.h header file

 1 #ifndef qassert_h
 2 #define qassert_h
 3
 4 #ifdef __cplusplus
 5 extern "C" {
 6 #endif
 7
 8 #ifndef NASSERT /* assertions enabled (not disabled)? */
 9 /* callback invoked in case assertion fails */
10 extern void onAssert__(const char *file, unsigned line);
11
12 #define DEFINE_THIS_FILE \
13 static const char THIS_FILE__[] = __FILE__
14
15 #define ASSERT(test_)\
16 if (test_) { \
17 } \
18 else onAssert__(THIS_FILE__, __LINE__)
19
20 #define REQUIRE(test_) ASSERT(test_)
21 #define ENSURE(test_) ASSERT(test_)
22 #define INVARIANT(test_) ASSERT(test_)
23 #define ALLEGE(test_) ASSERT(test_)
24
25 #else /* assertions disabled */
26
27 #define DEFINE_THIS_FILE extern const char THIS_FILE__[]
28 #define ASSERT(test_)
29 #define REQUIRE(test_)
30 #define ENSURE(test_)
31 #define INVARIANT(test_)
32 #define ALLEGE(test_)\
33 if (test_) { \
34 } \
35 else
36
37 #endif
38
39 #ifdef __cplusplus
40 }
41 #endif
42
43 #endif /* qassert_h */

222 Chapter 8: Design of the Quantum Framework
Listing 8.1 shows the complete qassert.h header file, which is designed for C,
C++, or mixed C/C++ programming (lines 4–6, 39–41). The main macro ASSERT()
(lines 15–18) tests the expression that you pass to it and invokes the callback func-
tion onAssert__() when the expression evaluates to FALSE. The empty block in the
if statement might seem strange, but you need both the if and the else statements
to prevent unexpected dangling-if problems. Other macros — REQUIRE(),
ENSURE(), and INVARIANT()7 — are intended to validate preconditions, postcondi-
tions, and invariants, respectively. They all map to ASSERT() (lines 20–22) because
their different names serve only to better document the specific intent of the contract.

The callback function onAssert__() (line 10) gives clients the opportunity to
customize behavior when an assertion fails. You need to define onAssert__() some-
where in your program. If you define it in a C++ module, be careful to apply the
extern "C" linkage specification. Entry to onAssert__() is the ideal place to put a
breakpoint if you work with a debugger.

Tip: Install a permanent breakpoint in onAssert__().

ASSERT() invokes onAssert__() (line 18), passing THIS_FILE__ as a parame-
ter, rather than the standard preprocessor macro __FILE__, to avoid proliferation of
multiple copies of the filename string, which happens in the standard implementation
with the __FILE__ macro. To take advantage of this trick [Maguire 93], however,
you have to invoke the DEFINE_THIS_FILE macro (line 12), preferably at the top of
every C/C++ file. Every *.C or *.CPP file on the accompanying CD-ROM can serve
as an example.

Defining the preprocessor switch NASSERT (line 8) disables assertions. When dis-
abled, the assertion macros expand to nothing (lines 28–31); in particular, they do
not test the expressions passed as arguments. The notable exception is the ALLEGE()
macro (lines 32–35), which still executes the expression, although when assertions
are disabled, it does not invoke the onAssert__() callback. You can use ALLEGE()
when the expression has side effects that are important to the normal operation of
your program. In general, evaluating contracts should have no such side effects.

The most important point to understand about contracts is that they neither han-
dle nor prevent bugs, in the same way that contracts among people do not prevent
fraud. Asserting an outcome of an operation, as for example in ALLEGE((p =
malloc(sizeof foo)) != NULL),8 might give you a warm and fuzzy feeling that
you have handled or prevented a bug, when in fact, you haven’t. You did establish a

7. The names are a direct loan from Eiffel, the programming language that natively implements Design by Con-
tract.

Handling Errors and Exceptional Conditions 223
contract, however, which in this particular situation declares the failed malloc() a
bug. What does it buy you? It turns every asserted bug, however benign, into a fatal
error. If you haven’t programmed with assertions before, you might think that this
must be backwards: contracts not only do nothing to fix bugs, they also make things
worse! This is exactly the cultural difference of DBC. Recall from the previous section
that the first priority when dealing with bugs is to help catch them. To this end, a bug
that causes a loud crash (and identifies exactly which contract was violated) is much
easier to find than a subtle one that manifests itself intermittently millions of machine
instructions downstream from the spot where you could have easily caught it.

DBC complements the rest of object technology and is as important (if not more)
as classes, objects, inheritance, and polymorphism [ISE 97].9 DBC is especially valu-
able for embedded real-time systems because contracts can cover all those situations
that, in other domains, would require handling as exceptional conditions. As Ber-
trand Meyer [Meyer 97b] observes (and I cannot agree more):

It is not an exaggeration to say that applying Eiffel’s assertion-based O-O
development will completely change your view of software construction …. It puts the
whole issue of errors, the unsung part of the software developer’s saga, in a completely
different light.

I cannot do justice to the subject of all the creative ways in which contracts can
help you detect bugs. The QF will provide you with some concrete examples of strate-
gic, as well as tactical, contracts that are specific to the embedded real-time domain.10

8.2.2 State-Based Handling of Exceptional Conditions

Paraphrasing the definition from the beginning of this section, an exceptional
condition is a specific situation in the lifetime of a system that calls for a special
behavior. In active objects, a change in behavior corresponds to a change in state
(state transition). Hence, in active objects, the associated statechart is the most
natural way to handle all conditions, including exceptional conditions. More-
over, because of its support for behavioral inheritance, a statechart is ideal for
implementing a consistent exception-handling policy. A common superstate can
define a general policy that the substates can either accept (inherit) or override (spe-

8. Note the use of ALLEGE() rather than ASSERT(), because the side effect (setting p) is certainly important for
proper program operation, even when assertions are disabled. I am still emphasizing asserting malloc()
because it is such a no-no in desktop programming.

9. It is absolutely amazing that the UML specification does not provide any built in support for such a fundamen-
tal methodology as DBC.

10. If you want to know more, the few references I provided here can give you a good start. In addition, the Internet
is full of useful links.

224 Chapter 8: Design of the Quantum Framework
cialize). This example is just another instance of the Ultimate Hook state pattern
(Chapter 5).

Such state-based exception handling is typically a combination of the Ultimate
Hook and the Reminder state patterns (Chapter 5). Whenever an action within an
active object encounters an exceptional condition, it generates a reminder event and
posts it to self. This event, processed in the following RTC step, triggers the state-
based handling of the exceptional condition.

State-based exception handling offers a safe and language-independent alternative
to the built-in exception-handling mechanism of the underlying programming lan-
guage. As described in Section 3.6 in Chapter 3, throwing and catching exceptions in
C++ is risky in any state machine implementation because it conflicts with the funda-
mental RTC semantics of state machines.

Again, language-based exception handling comes from general-purpose comput-
ing, where designers of software libraries cannot be specific about handling excep-
tional situations. Typically, they don’t have enough context to determine whether a
given circumstance is a bug or an exceptional condition, so they throw an exception
just in case a client chooses to handle the situation. In C++, exception handling
incurs extra run-time overhead, even if you don’t use it. More importantly, exception
handling in C++ (even without state machines) is tricky and can lead to subtle bugs.
As Tom Cargill [Cargill 94] noticed in his paper “Exception handling: A false sense
of security”:

Counter-intuitively, the hard part of coding exceptions is not the explicit throws and
catches. The really hard part of using exceptions is to write all the intervening code in
such a way that an arbitrary exception can propagate from its throw site to its handler,
arriving safely and without damaging other parts of the program along the way.

If you can, consider leaving out C++ exception-handling mechanisms from your
embedded software (e.g., EC++ intentionally does not support exceptions). If you
cannot avoid it, make sure to catch all exceptions before they can cause any damage.
Remember, any uncaught exception that unexpectedly interrupts an RTC step can
wreak havoc on your state machine.

Memory Management 225
Exercise 8.1 Add state-based exception handling to the Reminder state pattern imple-
mentation described in Section 5.2 in Chapter 5. Introduce a state
“fault” and an EXCEPTION event that triggers a transition from the
polling to the fault state. Subsequently, invoke the following
faulty() function in the entry action of the busy state.

As you can see, faulty() throws an exception every 10th time
it’s invoked. Surround the invocation of faulty() with a try
block and turn the exception into the EXCEPTION event by posting
this event to self in the catch (…) block. Confirm that the excep-
tion thrown from faulty() causes transition from the polling to
the fault state. Verify that the state-based exception-handling
mechanism correctly cleans up the Windows timer allocated in the
entry action to polling.

8.3 Memory Management
Unquestionably, one of the most important decisions that you will make in designing
your embedded application is the memory management policy. The policies used in
desktop applications are often not appropriate or applicable to embedded real-time
systems, and in this section, I show you why. The QF design carefully enables you to
avoid inappropriate memory management mechanisms. At the same time, the QF
cannot enforce any particular memory management style, which leaves you much
flexibility in this respect.11 Still, in this section, I recommend a memory management
policy that is compatible with the QF and is suitable for embedded real-time systems.

8.3.1 A Heap of Problems

If you have been in the embedded real-time software business for a while, you
must have learned to be wary of malloc() and free() (or their C++ counterparts
new and delete), because embedded real-time systems are particularly intoler-
ant of heap problems, which include the following pitfalls.

void faulty() {
 static int faultCtr = 10;
 if (--faultCtr == 0) {
 faultCtr = 10;
 throw "fault";
 }
}

11. Including the freedom to shoot yourself in the foot.

226 Chapter 8: Design of the Quantum Framework
• Dynamically allocating and freeing memory can fragment the heap over time to
the point that the program crashes because of an inability to allocate more RAM.
The total remaining heap storage might be more than adequate, but no single
piece satisfies a specific malloc() request.

• Heap-based memory management is wasteful. All heap management algorithms
must maintain some form of header information for each block allocated. At the
very least, this information includes the size of the block. For example, if the
header causes a four-byte overhead, then a four-byte allocation requires at least
eight bytes, so only 50 percent of the allocated memory is usable to the applica-
tion. Because of these overheads and the aforementioned fragmentation, deter-
mining the minimum size of the heap is difficult. Even if you were to know the
worst-case mix of objects simultaneously allocated on the heap (which you typi-
cally don’t), the required heap storage is much more than a simple sum of the
object sizes. As a result, the only practical way to make the heap more reliable is
to massively oversize it.

• Both malloc() and free() can be (and often are) nondeterministic, meaning
that they potentially can take a long (hard to quantify) time to execute, which
conflicts squarely with real-time constraints. Although many real-time operating
systems (RTOSs) have heap management algorithms with bounded, or even deter-
ministic performance, they don’t necessarily handle multiple small allocations effi-
ciently.
Unfortunately, the list of heap problems doesn’t stop there. A new class of prob-

lems appears when you use heap in a multithreaded environment. The heap becomes
a shared resource and consequently causes all the headaches associated with resource
sharing, so the list goes on.
• Both malloc() and free() can be (and often are) non-reentrant; that is, they

cannot be safely called simultaneously from multiple threads of execution.12

• The reentrancy problem can be remedied by protecting malloc(), free(),
realloc(), and so on internally with a mutex semaphore,13 which lets only one
thread at a time access the shared heap (Section 8.4.1). However, this scheme
could cause excessive blocking of threads (especially if memory management is
nondeterministic) and can significantly reduce parallelism. Mutexes are also sub-
ject to priority inversion (see the sidebar “Priority Inversion, Inheritance, and

12. You need to consult the run-time library accompanying your compiler to link to the right version of reentrant
heap management routines. Be aware, however, that the reentrant versions are significantly more expensive to
call.

13. For example, the VxWorks RTOS from WindRiver Systems protects heap management routines with a mutex
[WindRiver 97].

Memory Management 227
Ceiling” on page 231). Naturally, the heap management functions protected by a
mutex are not available to interrupt service routines (ISRs) because ISRs cannot
block.
Finally, all the problems listed previously come on top of the usual pitfalls associ-

ated with dynamic memory allocation. For completeness, I’ll mention them here as
well.
• If you destroy all pointers to an object and fail to free it or you simply leave

objects lying about well past their useful lifetimes, you create a memory leak. If
you leak enough memory, your storage allocation eventually fails.

• Conversely, if you free a heap object but the rest of the program still believes that
pointers to the object remain valid, you have created dangling pointers. If you
dereference such a dangling pointer to access the recycled object (which by that
time might be already allocated to somebody else), your application can crash.

• Most of the heap-related problems are notoriously difficult to test. For example,
a brief bout of testing often fails to uncover a storage leak that kills a program
after a few hours, or weeks, of operation. Similarly, exceeding a real-time dead-
line because of nondeterminism can show up only when the heap reaches a cer-
tain fragmentation pattern. These types of problems are extremely difficult to
reproduce.
This is quite a list,14 and I didn’t even touch the more subtle problems yet.15 So

why use the heap at all? Well, because the heap is so convenient, especially in gen-
eral-purpose computing. Dynamic memory management perfectly addresses the gen-
eral problem of not knowing how much memory you’ll need in advance. (That’s why
it’s called general-purpose computing.)

However, if you go down the lists again, you will notice that most of the heap
problems are much less severe in the desktop environment than they are in embed-
ded applications. For a desktop application, with only “soft” real-time require-
ments, all issues (except dangling pointers, perhaps) boil down to inefficiencies in
RAM and CPU use. The obvious technique that cures many issues is to massively
oversize the heap. To this end, all desktop operating systems these days support vir-
tual memory, which is a mechanism that effects a manifold increase in the size of
available RAM by spilling less frequently used sections of RAM onto disk. Another
interesting approach, brought recently to the forefront by Java (not that it wasn’t
known before), is automatic garbage collection. You can view garbage collection as

14. Why don’t you use this list when interviewing for an embedded systems programmer position? Awareness of
heap problems is like a litmus test for a good embedded systems programmer.

15. For example, C++ exception-handling mechanism can cause memory leaks when a thrown exception
“bypasses” memory deallocation.

228 Chapter 8: Design of the Quantum Framework
a software mechanism to simulate an infinite heap. It addresses the problems of dan-
gling pointers, storage leaks, and heap fragmentation (albeit at a hefty performance
price tag). The other issues, especially deterministic execution, remain unsolved and
even aggravated in the presence of garbage collection.

For decades, heap problems have been addressed in desktop environments with
ever more powerful hardware. Fast CPUs, cheap dynamic RAM, and massive virtual
memory disk buffers can mask heap management inefficiencies and tolerate memory-
hungry applications (some of them leaking like a sieve) long enough to allow them to
finish their job.16

Not so in the embedded real-time business! Not only are embedded systems
severely limited in the amount of available RAM, but they also must run for weeks,
months, or years without rebooting. Under these circumstances, the numerous prob-
lems caused by heap-based memory allocation can easily outweigh the benefits. You
should very seriously consider not using the heap at all, or at least severely limiting
its use in embedded real-time applications.

You should be aware, however, of the far-reaching consequences of such a deci-
sion. First, this decision tends to dramatically change your programming style. Sec-
ond, it severely limits your choice of the third-party libraries and legacy code you
want to reuse (especially if you borrow code designed for the desktop). In C, you will
have to rethink implementations that use dynamic linked lists, trees, and other
dynamic data structures.17 In C++, the implications are even more serious because
the object-oriented nature of C++ applications results in much more intensive
dynamic memory use than in applications using procedural techniques. For example,
a lack of dynamic storage implies that you will lose many advantages of constructors
because the static instantiation of objects happens at a time when you typically don’t
have enough initialization information. You also will be unable to benefit from the
ISO C++ standard libraries (e.g., the Standard Template Library) and from the design
techniques they embody.

Nonetheless, deciding not to use the regular heap does not mean that you com-
pletely step back into the stone age of programming. In particular, the QF uses
dynamic memory — or even a very specific form of garbage collection — to han-
dle events. Before jumping ahead, however, I’ll start with the straightforward
(stone age) techniques used in the QF.

16. That’s why it’s a good idea to reboot your PC every once in a while.
17. It does not necessarily mean that you cannot use any dynamic data structures. For example, the QF uses inter-

nally linked lists, but there is no requirement that they be allocated on the heap.

Memory Management 229
8.3.2 Memory Management in the QF

The basic design philosophy of the QF with respect to memory management is not to
commit any memory internally (except for trivial variables). Instead, the QF leaves to
the clients the instantiation of any framework-derived objects and the initialization
of the framework with the memory that it needs for operation, leaving you the com-
plete flexibility of using the memory mix of your choice. For example, a QF applica-
tion can use statically allocated memory exclusively, but nothing precludes it from
using heap memory or any combination of the two.

I strongly recommend using statically allocated memory wherever you can. The
vast majority of embedded applications can be implemented with a fixed number of
active objects (threads) and with the entire physical memory available to the embed-
ded application (in contrast to a typical desktop application that must share memory
with others). In this case, even if you could allocate storage from the heap, why
would you do it? With static memory allocation, your linker (or actually the locator)
automatically verifies the worst-case memory use against the available RAM. If you
exceed the capacity of RAM, you know it right away because your application won’t
link. Moreover, the map file shows you exact utilization of each kind of memory in
your system. On the other hand, using the heap puts the burden on you to determine
correct heap size. The heap leaves you in the dark, and you will not know until run
time whether you sized it sufficiently large. Even if you have used the heap judi-
ciously (not causing much fragmentation), in the long run, you end up using signifi-
cantly more RAM (because of overheads and a safety margin), as well as more code
space (ROM) for the routines to manage the heap.

As an example of the QF design philosophy, consider QActive::start(), which
allows you to initialize and start the thread associated with an active object. The
complete signature of this method looks as follows.

I’ll defer discussion of the first argument (prio) to Section 8.6.3 and concentrate
here on the other arguments. They have the following semantics: qSto is a pointer to
the storage for the event queue (Section 8.6.2 discusses event queues), qLen is the
length of the queue (in units of QEvent*), stkSto is a pointer to the storage location
for the stack,18 and stkLen is the length of the stack (in units of int). With this sig-
nature, you have the complete freedom to allocate both the event queue and the
stack in whichever way you like.

This flexibility could have important performance implications because, often in
embedded systems, some RAM is better than other RAM. For example, the AT91

void QActive::start(unsigned prio, QEvent *qSto[], unsigned qLen,
 int stkSto[], unsigned stkLen);

18. You typically need to allocate a separate stack for each thread of execution.

230 Chapter 8: Design of the Quantum Framework
family of ARM7TDMI-based microcontrollers from Atmel Corporation provides a
small amount (4–8KB) of high-speed 32-bit on-chip SRAM. This SRAM is too small
for most applications, so additional RAM must be added externally. The fast on-chip
memory, however, is ideal for placing the stacks, and a failure to do so slows your
application significantly. Running with stacks in external RAM is much slower (e.g.,
four times slower) because the AT91 only has a 16-bit external memory interface
(and all ARM cores use a 32-bit stack). Additionally, the external RAM requires
more bus cycles, because of wait states, than the fast on-chip SRAM.

Some RTOSs (e.g., VxWorks [WindRiver 97]) don’t let you specify the memory
for the stack; instead, they allocate the stack themselves (typically on the heap).
Ported to such an RTOS, QActive::start() needs to be invoked with the stkSto
argument set to NULL (the concrete port should assert that) to avoid doubly allocat-
ing memory. This is just one example in which a commercial RTOS could preclude
an important performance optimization (e.g., for the AT91 microcontroller family).

8.4 Mutual Exclusion and Blocking
In most real-time systems, different activities have different urgencies. RTOSs typi-
cally address this common situation by assigning different priorities to different
threads and giving precedence to the threads with the higher priority. The scheduling
algorithm embedded inside every RTOS allocates the CPU to threads based on their
priorities. One of the most important scheduling algorithms, called the preemptive,
priority-based scheduler, always assigns the CPU to the highest priority thread ready
to run.

High-priority threads are not always ready to run because they are often blocked.
A thread can block for many reasons. One of the most important reasons is the
mutually exclusive access to shared resources (recall the dining philosophers problem
from Chapter 7).

The following sections discuss various techniques for obtaining mutual exclusion
and explain the hazards associated with them. Similar to memory management, the
design of the QF carefully avoids inappropriate methods of mutual exclusion inter-
nally. At the same time, the QF cannot enforce that your applications stay away from
inappropriate mechanisms.

8.4.1 Perils of Mutual Exclusion

In Chapter 7, I listed the methods of obtaining a mutually exclusive access to a
shared resource. These techniques include

• disabling interrupts,
• disabling task switching, and
• locking resources with semaphores.

Mutual Exclusion and Blocking 231
The first two methods are relatively unsophisticated and have serious drawbacks.
Disabling interrupts completely cuts the CPU off from the outside world and can
increase interrupt latency if the access requires more than a handful of machine
instructions. Disabling task switching is less radical, but it prevents indiscriminately
the execution of all other threads, including high-priority threads totally unrelated to
the resource. A more refined approach is to use a semaphore, because this method
affects only the threads actually competing for the resource. Indeed, almost all multi-
tasking operating systems provide an assortment of semaphores specialized for vari-
ous functions. A semaphore optimized specifically for problems inherent in mutual
exclusion is called a mutual exclusion semaphore, or simply a mutex.

Among all the mutual exclusion mechanisms, the (mutex) semaphore is the most
universal. This mechanism is applied quite often inside RTOSs and in various reen-
trant (thread-safe) libraries, so your application could be using a mutex, even though
you do not employ this mechanism directly. For example, the heap management rou-
tines discussed earlier, such as malloc(), free(), realloc(), and so on, are com-
monly protected by a mutex, so that multiple threads can access the (shared) heap
resource concurrently. However, in spite of the ubiquity (or perhaps just because of
it), mutexes are the most dangerous of all mechanisms (see the sidebar “Priority
Inversion, Inheritance, and Ceiling”).

Priority inversion can be a show stopper in any real-time system; yet, most less
sophisticated RTOSs and real-time kernels don’t support any mechanisms to prevent
it. Even the high-end systems, which have priority inheritance or priority ceiling built
in, don’t enable these mechanisms by default because of the high overhead involved.

Priority Inversion, Inheritance, and Ceiling

Priority inversion is the deadly condition in which a low-priority thread blocks a ready
and willing high-priority thread indefinitely. Consider the scenario in Figure 8.1a. A,
B, and C are threads of low, medium, and high priority, respectively. Threads B and C
are blocked, waiting for events. Thread A is running. At time 4, A invokes malloc()
and acquires exclusive access to the heap through a mutex. In the meantime, an event
for the high-priority thread C arrives at time 5. Thread C preempts thread A. After
running for a while, C needs memory and invokes malloc(). Internally, malloc()
tries to acquire the mutex and blocks at time 10 because A already holds the mutex.
Thread A resumes execution, but because of its low priority, it is vulnerable to pre-
emptions. Indeed, at time 11, B receives an event, unblocks, and immediately preempts
A. Thread B does not have any need for memory, so it takes advantage of the conten-
tion between C and A and takes a long (indefinite) time to process the event. Even
though execution time for malloc() might be deterministic, the high-priority thread
C cannot run for an indefinite time and misses its deadline at time 20.

232 Chapter 8: Design of the Quantum Framework
A highly publicized example of a system failure caused by priority inversion is
the Mars Pathfinder mission from July 1997. The mission (eventually very suc-
cessful) was saved by remotely enabling priority inheritance in the VxWorks
mutex implementation that was originally not activated because of its high over-
head (e.g., see http://www.windriver.com/customer/html/jpl.html).

Many operating systems recognize the problem and provide workarounds, which
rely on augmenting the mutex implementation to prevent intermediate priority threads
from running when low- and high-priority threads are competing for access to the
shared resource. A mutex can promote a lower priority thread to the higher priority
on a temporary basis while it’s owned by the lower priority thread using one of two
methods: priority inheritance and priority ceiling [Kalinsky 98].

The priority inheritance mutex assures that a thread that owns a resource executes
at the priority of the highest priority thread blocked on that resource. Figure 8.1b
shows an example of the previous scenario, except this time, as soon as the high-prior-
ity thread C tries to access the heap (at time 10), the mutex elevates the priority of A,
which holds the resource, to the level of C. Thread C blocks as before, but A tempo-
rarily inherits its priority and is no longer vulnerable for preemption by B, so A can
complete malloc() and release the mutex at time 12. As soon as this happens, the
mutex lowers the priority of A to its original level. Now C can preempt A, acquire the
mutex, and continue. This time, C easily meets its deadline.

The priority ceiling mutex also temporarily raises the priority of the thread holding
a shared resource, but it uses a fixed priority level (the ceiling priority) that is assigned
to the mutex on its creation. The ceiling priority should be at least as high as the high-
est priority thread working with this mutex. Figure 8.1c shows the scenario. As soon
as A calls malloc() at time 4, its priority elevates to that of C, so now C cannot pre-
empt A as it receives an event at time 5. Instead, C has to wait until A releases the
mutex at time 7 and its priority drops down to the original level. At this point, C runs
to completion (and easily meets its deadline), B runs to completion, and finally A runs
to completion. Choosing a ceiling priority that is too high will effectively lock the
scheduler for other (unrelated) threads. Choosing one that is too low will not protect
against some priority inversions. Nevertheless, priority ceiling has some advantages
over priority inheritance. It is faster, tends to cause fewer context switches, and is
much easier for static timing analysis.

The concepts of priority inheritance and priority ceiling can be combined into a
complex, but completely bulletproof (immune even to deadlocks), system-wide solu-
tion known as the priority ceiling protocol (refer to Sha and colleagues [Sha+ 90] for
more information).

Mutual Exclusion and Blocking 233
More importantly, all mutual exclusion mechanisms lead to coupling among dif-
ferent threads in the time domain. Anytime a high-priority thread, C, shares a
resource with a low-priority thread, A, the high-priority thread must take into
account delays caused by blocking when A exclusively accesses the shared resource.
If A locks the resource for too long, then C might be delayed (and miss its deadline,
for example), even if the priority inversion is correctly avoided. Thus the mutual
exclusion mechanism couples otherwise independent threads A and C, because any
changes to A could have adverse effects on C.

As you will see throughout the rest of this book, the QF consistently helps you to
avoid any form of mutual exclusion by handling all the burdens of mutual exclusion

Figure 8.1 Timing diagrams for priority inversion (a), priority inheritance (b), and

priority ceiling (c)

0

blocked
ready

running

blocked
ready

running

blocked
ready

running

time

malloc()

event

event

malloc()

deadline
(missed)

5 10 15 20

done

0

blocked
ready

running

blocked
ready

running

blocked
ready

running

time

malloc()

event

event

malloc()

promotion demotion

deadline

5 10 15 20

done

malloc() done

done

done

done

done

malloc() done

0

blocked
ready

running

blocked
ready

running

blocked
ready

running

time

malloc() (promotion)

event

event

demotion

deadline

5 10 15 20

done

done

done

malloc() done

(c)

(b)

(a)

A

B

C

A

B

C

A

B

C

234 Chapter 8: Design of the Quantum Framework
internally. In all cases when the QF needs to obtain mutually exclusive access (e.g., to
pass events shared among active objects), it uses the simplest safe method (i.e., briefly
disabling interrupts), which is not subject to priority inversions.

8.4.2 Blocking in Active Object–Based Systems

In general, active objects block for three reasons: (1) to wait for new events between
RTC steps, (2) to wait for other active objects in the middle of an RTC step, and (3)
to wait for occurrences not related to other active objects. Type 1 blocking is normal.
Type 2 blocking is generally a bad idea, and the design of the QF consistently avoids
it at the framework level. It is up to you, however, to stay away from this type of
blocking at the application level. Type 3 blocking is acceptable and sometimes
unavoidable.

As an example of blocking while waiting for active objects in the midst of an RTC
step, assume that you allow an active object to block while publishing an event that
the subscriber active object cannot accept because its event queue is full. Consider
the following scenario: Three active objects, A, B, and C, have priorities low,
medium, and high, respectively. High-priority object C is running; objects A and B
also have events to process (in fact, the event queue of A is full) but are waiting for
their turn to run. At some point, object C publishes an event that happens to be sub-
scribed by object A. At this point, object C blocks (before running to completion),
because A’s queue is full. But A cannot run and clean its queue because the higher
priority object B preempts it and can continue to run indefinitely, effectively prevent-
ing high-priority object C from running. You have priority inversion (see the sidebar
“Priority Inversion, Inheritance, and Ceiling” earlier in this chapter), however, not in
conjunction with a mutex this time but with an event queue. Even if you remedied
the problem by applying priority inheritance (or a priority ceiling) to event queues,
active objects A and C would still be coupled in the time domain. High-priority
active object C would have to take into account delays caused by blocking on A, and
any changes in A could have adverse effects on C. But this immediately derails the
idea of loose coupling and system extensibility — high-priority object C should not
be affected by who will subscribe to its events. That’s why (among other reasons)
type 2 blocking is a bad idea.

As an example of blocking while waiting for occurrences not related to other
active objects, consider an active object whose job it is to handle requests to send
data, say, through a serial port. The serial port has a limited throughput, and sending
data takes considerable time. Therefore, it is natural for the active object to write a
chunk of data to the port (perhaps via a device driver) and block until the transmis-
sion completes. Blocking in this case is unrelated to the progress of other active
objects and does not introduce couplings among them (typically the blocked active
object is released from an interrupt rather than an action in another active object).

Passing Events 235
The only hazard is that while the active object is blocked, its event queue can over-
flow. However, this indicates a sustained mismatch between the volume of applica-
tion output (production rate) and available bandwidth (consumption rate), which no
queue can handle. You should manage this either by reducing the output or by
increasing the throughput (perhaps by going to a higher baud rate).

Blocking by mutual exclusion in an active object–based system is the software
equivalent of friction in a mechanical system. A well-designed, multitasking system is
like a well-lubricated engine that can run smoothly and efficiently without much
wear and tear — forever. Excessive blocking in a software system, on the other hand,
is like excessive friction in a machine. It can destroy even the best quality parts, and
it eventually brings the whole machine to a grinding halt. You don’t want this to
happen to your software system — lubricate your software machines!

8.5 Passing Events
Event passing is without a doubt the most intricate aspect of the QF, or any other
active object–based framework for that matter. The main difficulty is that event
instances are the only artifacts explicitly shared among active objects. The quantum
metaphor shows you immediately how events differ fundamentally from all other
objects. As the mediators of all interactions, events correspond in the quantum pic-
ture to so-called virtual particles,19 which have a very limited lifetime (given by the
uncertainty principle ∆t ≤ (h–/∆E)), whereas all other objects correspond to real parti-
cles (with unlimited lifetimes).

This qualitative difference demands that you handle events differently from other
objects. In general, event instances cannot be static but must be created and
destroyed dynamically. Ignore for a moment how to actually implement such
dynamic creation and destruction; instead, investigate the mechanism of event
exchange. The quantum metaphor offers guidance.

In quantum field theory, when an electron emits a virtual photon, the photon must
be absorbed by another electron (electron–electron interaction) or be reabsorbed by
the original electron. Either way, the photon has to disappear within a very limited
time. The destruction of the virtual photon must be guaranteed and automatic (fail-
ure to annihilate a virtual particle in time violates the uncertainty principle and ulti-
mately energy conservation). An interesting question is: Who “owns” the virtual
photon?20 It is easier to see who doesn’t. Definitely, neither the sending electron, nor
the receiving electron really own the photon. The recipient cannot, for example,

19. See the sidebar “Particle Interaction in Quantum Field Theory” in Chapter 7.
20. This is not really a physical question, but the problem of ownership is interesting from the programming per-

spective. In programming, the owner has the responsibility of destroying the object. As in real life, ownership is
transferable.

236 Chapter 8: Design of the Quantum Framework
intercept it and explicitly send it to somebody else. Neither of the participants can
keep the virtual photon around for any significant time. Rather, the photon is just
loaned briefly for the duration of the interaction and then it must disappear into the
quantum vacuum.21

To translate this scenario into programming lingo, you need to substitute the
names of the main actors. You translate “electron” to “active object”, and “photon”
to “event.” Other concepts translate roughly as follows: “virtual” corresponds to
“dynamic,” “violation of energy conservation” to “memory leak,” and “quantum
vacuum” to “QF.” After translation, the quantum metaphor proposes a mechanism
of passing events that requires dynamic creation and automatic destruction of events.
Active objects do not own events. They receive events as loans that are valid only for
the duration of a single atomic RTC step (a quantum leap). In particular, active
objects cannot intercept and retransmit received events. Active objects also have to
eventually send out any events that they create, because even these events ultimately
don’t belong to them. The responsibility for delivering and automatically destroying
events rests exclusively with the QF, leading in effect to a specific automatic garbage
collection.

Because this model comes from a real-life metaphor, it has a good chance of
being coherent. After all, virtual particle exchange has been working flawlessly
ever since the Big Bang.22 To convince you, I will pose a few probing questions. Why
must the destruction of events be automatic? Well, if the client code (rather than the
framework) were responsible for explicit event destruction, then every event would
have to be handled (and eventually explicitly destroyed) by some active object; other-
wise, the event would leak. But this contradicts the idea of loose coupling, in which
the producer of the event doesn’t know who will consume the event (and if at all).

Why can’t active objects intercept events and keep them around for future ref-
erence? After all, perhaps event parameters contain some information that is
useful for longer than one RTC step. If you allowed active objects to intercept
events (thus acquiring ownership of events), the framework would have to be
notified somehow to spare these events from destruction. In the quantum meta-
phor, this would correspond to an energy-intensive process of converting virtual
particles into real ones, which would lead to a convoluted implementation that
nature doesn’t favor.

The QF event-passing mechanism that emerges from this analysis involves
dynamic event allocation, subscribing to events, publishing events, event multicast-

21. If you still need to know who owns that darn photon, then you can think of it as belonging to the quantum vac-
uum.

22. Okay, the Big Bang itself might be exactly the one (pretty big though) violation of the uncertainty principle.

Passing Events 237
ing (in case of multiple subscriptions), and automatic event recycling. In the follow-
ing sections, I cover all of these features in turn.

8.5.1 Dynamic Event Allocation

Now that you have an idea of the event-passing mechanism of the QF, you can con-
template implementing dynamic event allocation. If you think that my critique of the
heap has caught up with me, you are only partially right. Simpler alternatives exist to
the general-purpose, variable-block-size heap. A well-known alternative, commonly
supported by RTOSs, is a fixed-block-size heap, also known as a memory partition
or memory pool.

Unlike the conventional (variable-block-size) heap, a fixed-block-size heap has
guaranteed capacity. It is not subject to fragmentation because all blocks are exactly
the same size. Because all blocks have identical size, no header is associated with
each block allocated, thus reducing the system overhead per block. Furthermore,
allocation through a fixed-block-size heap can be very fast and completely determin-
istic. This aspect allows you to protect a fixed-block-size heap with a critical section
of code (briefly disabling interrupts) rather than a mutex. As explained in Section
8.4.1 briefly disabling interrupts does not cause priority inversion. In the case of a
fixed-block-size heap, the access is so fast that interrupts need to be disabled only
briefly (no longer than other critical sections in the system), which does not increase
interrupt latency and allows access to such a heap, even from ISRs.

Note: A fixed-block-size heap is no different from any other multitasking kernel
object. For example accessing a mutex also requires briefly turning off
interrupts (after all, a mutex is also a shared resource).

The most obvious drawback of a fixed-block-size heap is that it does not support
variable-sized blocks. Consequently, the blocks have to be oversized to handle the
biggest possible allocation. Such a policy is often too wasteful if the actual sizes of
allocated objects (events in this case) vary a lot. A good compromise is often to use
not one, but a few heaps with blocks of different sizes — for example, small,
medium, and large.

For the sake of the following discussion, the term “event pool” stands for a fixed-
block-size heap customized specifically to hold events. Assume that a quantum event
pool class QEPool encapsulates a fixed-block-size heap and provides the myEvtSize
attribute for accessing the size of the events managed by the pool. (In Chapter 9, you
will find concrete implementations of the QEPool class.) Further assume that the

238 Chapter 8: Design of the Quantum Framework
class provides three methods: init(), get(), and put() for pool initialization,
event allocation, and event recycling, respectively.

Listing 8.2 Simple QF policy of using multiple event pools

Listing 8.2 shows the methods of the QF that implement a straightforward policy
for accessing multiple event pools. You use this policy simply to allocate an event
from the event pool of the smallest block size that can fit the requested event size. For
example, if you initialize two event pools to block sizes of 100 bytes (small-block
pool), and 200 bytes (big-block pool), then an event of 68 bytes will be allocated

 1 static QEPool locPool[MAX_POOL]; // allocate MAX_POOL event pools
 2 // The pool pointers keep track of pools actually used.
 3 // The first and last poolPtr are not used (must be 0),
 4 // which is guaranteed by static initialization in C/C++.
 5 static QEPool *locPoolPtr[1 + MAX_POOL + 1];
 6
 7 void QF::poolInit(void *poolSto,
 8 unsigned nEvts, unsigned evtSize)
 9 {
10 static unsigned poolId = 0;
11 REQUIRE(poolId < MAX_POOL); // cannot exceed the # of pools
12 // please initialize event pools in ascending order of evtSize:
13 REQUIRE(poolId == 0 || locPoolPtr[poolId]->myEvtSize < evtSize);
14 QF_EPOOL_INIT(&locPool[poolId], poolSto, nEvts, evtSize);
15 locPoolPtr[poolId + 1] = &locPool[poolId]; //add *initialized* pool
16 ++poolId; // one more pool; (poolId of 0 not used)
17 }
18
19 QEvent *QF::create(unsigned evtSize, QSignal sig) {
20 register unsigned id;
21 register QEPool *p;
22 for (id = 1, p = locPoolPtr[1]; p; p = locPoolPtr[++id]) {
23 if (evtSize <= p->myEvtSize) { //will evtSize fit in this pool?
24 register QEvent *e;
25 e = (QEvent *)p->get();
26 ASSERT(e); // the pool must not run out of events
27 e->poolId = id; // store pool-ID in the e
28 e->sig = sig; // set signal for this e
29 e->useNum = 0; // this e is new, not used yet
30 return e;
31 }
32 }
33 ASSERT(0); // event too big to fit in any initialized pool
34 return 0; // should never be reached, just to avoid compiler fuss
35 }

Passing Events 239
from the small-block pool and an event of 135 bytes from the big-block pool (Figure
8.2).

Figure 8.2 QF with two initialized event pools

Event pools require initialization through QF::poolInit() (Listing 8.2, lines 7–
17). According to the general memory management policy of the QF, this method
requires storage for the event buffer (in the poolSto argument). The other argu-
ments are the number of events in the pool (nEvts) and the event size (evtSize) in
bytes. Internally, the QF maintains two arrays: the array of event pool objects
(locPool[]) and the array of pointers to event pools (locPoolPtr[]). This latter
array serves as an indirection layer that (1) indicates which pools are actually initial-
ized and (2) provides mapping between pool IDs and pool objects.

In this design, event instances “remember” which event pool they came from (in
the poolId attribute) so they can be recycled back to the same pool. A pool ID of 0
has a special meaning (notice that locPoolPtr[0] is always NULL in Figure 8.2). It
indicates that an event is not coming from any event pool, which is useful for occa-
sional optimizations (e.g., timeout events don’t need to be allocated and recycled to
event pools).

For possibly quick event allocation (QF::create()), the pointers to event pools
must be sorted in ascending order of event sizes. Indeed, the indirection layer of
locPoolPtr[] allows arbitrary mapping between pools and pool IDs (indices into
the locPoolPtr[] array), and it would be relatively easy to sort the locPoolPtr[]
array according to the block sizes in the QF::poolInit() method. This arrange-
ment would give clients the flexibility of initializing event pools in any order, not nec-
essarily in the ascending order of the block sizes. However, do clients really need
such flexibility? Typically, clients initialize event pools on application startup, and it’s
not an inconvenience to do it in any order, including the desired one. The only prob-
lem is that clients should know about it. In situations like that, a contract (such as
the precondition in line 13 of Listing 8.2) can help. This contract spells out that each
invocation of QF::poolInit() (except the first one) must initialize the event pool of
a bigger block size than the previous one. This tactical contract guards against clients
forgetting the correct order of initialization (they will find out soon enough, should
they forget) and saves poolInit() from sorting the locPoolPtr[] array, which

locPoolPtr:*QEPool
[0] NULL
[1]
[2]
[3] NULL
[4] NULL

locPool:QEPool

[0] small-block pool

[1] big-block pool

[2] uninitialized

Small-block
Storage

Big-block
Storage

QF internal data Client-provided
storage

evt->poolid

240 Chapter 8: Design of the Quantum Framework
although straightforward, could easily triple the size of the method. This is just one
example of how contracts can lead to simpler code.

The QF::create() method (Listing 8.2, lines 19–35) is a straightforward imple-
mentation of the event allocation policy discussed earlier. The method scans through
locPoolPtr[] starting from pool ID = 1, and as soon as it finds a pool that can
accommodate the requested size (line 23), it obtains a memory block from this pool
(line 25). Subsequently, QF::create() asserts that the pool has not run out of
blocks (line 26). This is an example of a strategic contract. Alternative approaches
could be to return an error code, to let clients decide whether this is an error or
exceptional condition, or to block on the pool and wait until other active objects
release some events (Section 8.4 argues why blocking is a bad idea). The contract in
line 26 is an important design decision; it treats running out of pool space as an error
not less severe than, for example, running out of stack space.

Typically, you will not use QF::create() directly, but through the Q_NEW()
macro.

This macro dynamically creates a new event of type evT_ (all event types in the QF
are subclasses of QEvent) with the signal sig_. It returns a pointer to the event
already downcast to the event type evT_*. The contract in line 26 of Listing 8.2
guarantees that the pointer is valid, so you don’t need to check the pointer (unlike
the value returned from malloc(), which you should always check).

8.5.2 Publish–Subscribe Model

As described in Chapter 7, the QF uses the publish–subscribe interaction model — a
popular way of decoupling the event producers from the consumers.23 More specifi-
cally, the design of the QF hinges on the combination of Observer and Mediator
design patterns [Gamma+ 95], where active objects play the role of Observers, and
the QF is the Change Manager (a specific kind of Mediator).

Within the QF, the design patterns work as follows. On startup, each active
object subscribes to one or more signals by the framework, thus becoming an
observer (the default subject is the QF). From that time on, anything that happens in
the application is a direct or indirect result of publishing events. The publication
requests to the framework can originate asynchronously from many sources, not
necessarily active objects — for example, from interrupts or device drivers. The QF
manages all these interactions as the Change Manager. In this role, the QF has three
responsibilities:

#define Q_NEW(evtT_, sig_) ((evtT_ *)QF::create(sizeof(evtT_), (sig_)))

23. For example, the Java 1.1 Event Model is a publish–subscribe architecture for delivering events from event
sources (subjects) to action listeners (observers).

Passing Events 241
• provide an interface for active objects to subscribe and unsubscribe to par-
ticular signals (QF::subscribe()/QF::unsubscribe()),

• provide a generally accessible interface for publishing events (QF::pub-
lish()), and

• define the event delivery policy (update strategy for subjects).

Figure 8.3 Signal-to-subscriber lookup table and QSubscrList data type

Delivering events is the most frequently performed function of the framework;
therefore, it is important to implement efficiently. The QF uses a lookup table to map
signals (e->sig) to subscriber lists, as shown in Figure 8.3. A subscriber list is a list
of active objects that have subscribed to a given signal. The list (typedef’d to
QSubscrList) is just a densely packed bit field storing unique priorities of active
objects24 (more precisely, priorities of the threads associated with active objects; Sec-
tion 8.6.3). Consequently, the QF requires that clients assign a unique priority to
each active object (through QActive::start()), even when the QF is based on an
operating system that does not support thread priorities in the preemptive, priority-
based sense.25 As will become clear in the next section (covering the policy of deliv-
ering events), the priorities stored in subscriber lists serve both to identify active
objects and to resolve contentions over events when more than one active object has
subscribed to the same event type.

[0] unused
[1] unused
[2] unused
[3] unused

. . .

locSubscrList:QSubscrList[]

[locMaxSignal]

[Q_USER_SIG]
bit 31 bit 0bit 15

prio1

typedef unsigned long QSubscrList;

. . .
[evt->sig]

unused entries

prio2prio3prio40000

used entries

24. The current implementation of the QF designates four bits per active object in the 32-bit QSubscrList, but
you can easily change both the size of QSubscrList and the number of bits per active object.

25. Real-time constraints practically exclude systems that do not support thread priorities. However, the QF can be
ported to almost any operating system, not necessarily real-time systems (e.g., Windows), in which case you just
make up a unique priority for each active object.

242 Chapter 8: Design of the Quantum Framework
Note: In severely memory-constraint applications, the size of the subscriber
lookup table could become a concern, in which case you might try to
reduce the number of different signals and reduce QSubscrList to only 16,
or even 8, bits. Typically, however, the table is quite small. For example, the
table for a complete real-life GPS receiver application with 50 different sig-
nals costs 200 bytes of RAM.

Active objects subscribe to signals through QF::subscribe(), as shown in List-
ing 8.3. In the precondition (lines 3, 4), the method asserts that the signal is indeed in
the range established by QF::init() and that the active object is known to the
framework under the priority it claims (the active object becomes known to the
framework through QActive::start(), which invokes QF::add(), as discussed in
Section 8.6.3). Subsequently, QF::subscribe() enters a critical section of code26

(line 5) to atomically add the new priority to the locSubscrList[sig] subscriber
list corresponding to the signal sig. In line 7, the method asserts that the list still has
room for new subscribers (the last slot still must be free).

Figure 8.4 Inserting a new priority into the subscriber list at bit n (see

QF::subscribe(), Listing 8.3)

For subsequent efficient event delivery, the method needs to keep the subscriber
list sorted in descending order of priorities (i.e., higher priorities at lower bit num-
bers). This sorting is achieved when the for loop scans for the right slot in which to

26. I’m concerned at this point only with the integrity of the subscriber list and not whether the critical section
extends the interrupt latency. I assume that subscriptions happen at the startup transient, when interrupt latency
does not matter yet.

bit 31 bit 0

p=5

QSubscrList

p=4p=3p=10000

p=2

p=5p=4p=3

p=2

p=1000

(sl & ~(~0<<n)
|(p << n) |

((sl << 4) & (~0 << (n+4)))

sl:QSubscrList

bit n
bit n+4

Passing Events 243
insert the new priority, as well as in some creative bit shifting and bit masking in
lines 10 through 12 (see also Figure 8.4).

Listing 8.3 QF::subscribe()/QF::unsubscribe() pair of methods

For completeness, the QF provides unsubscribe() (Listing 8.3, lines 20–34),
which does the reverse of QF::subscribe(). Please note that both subscribe()
and unsubscribe() require an active object as a parameter, which means that only
active objects are capable of subscribing to events (only active objects can become
Observers).

 1 void QF::subscribe(QActive *a, QSignal sig) {
 2 register unsigned char p = a->myPrio; // priority of active object
 3 REQUIRE(Q_USER_SIG <= sig && sig < locMaxSignal && // boundary chk
 4 p < QF_MAX_ACTIVE && pkgActive[p] == a); //consistency chk
 5 QF_PROTECT(); // enter critical section
 6 register QSubscrList sl = locSubscrList[sig];
 7 ASSERT((sl & 0xF0000000) == 0); //must have at least one free slot
 8 for (register int n = 0; n < 32; n += 4) { // find priority slot
 9 if (p > ((sl >> n) & 0xF)) { // found priority slot?
10 sl = (sl & ~(~0 << n)) | // part of sl with priorities>p
11 (p << n) | // insert p at bit n
12 ((sl << 4) & (~0 << (n + 4))); // shifted rest of sl
13 locSubscrList[sig] = sl; // update the subscriber-list
14 break; // subscriber registered (attached to the list)
15 }
16 }
17 QF_UNPROTECT(); // leave critical section
18 }
19
20 void QF::unsubscribe(QActive *a, QSignal sig) {
21 register unsigned char p = a->myPrio; // priority of active object
22 REQUIRE(Q_USER_SIG <= sig && sig < locMaxSignal && // boundary chk
23 pkgActive[p] == a); // consistency check
24 QF_PROTECT(); // enter critical section
25 register QSubscrList sl = locSubscrList[sig];
26 for (register int n = 0; n < 32; n += 4) { // find priority slot
27 if (p == ((sl >> n) & 0xF)) { // found priority slot?
28 sl = (sl & ~(~0 << n)) | ((sl >> 4) & (~0 << n));
29 locSubscrList[sig] = sl; // update the subscriber-list
30 break; // subscription canceled (removed from the list)
31 }
32 }
33 QF_UNPROTECT(); // leave critical section
34 }

244 Chapter 8: Design of the Quantum Framework
Publishing events through QF::publish() (Listing 8.4), on the other hand, takes
an event instance as the sole parameter. This method is designed to be callable from
both a task and an interrupt. In the precondition (lines 2, 3), QF::publish() checks
whether the signal associated with the event is in range and whether the event is not
already in use. “In use” here means that the event instance has been published but
the framework hasn’t recycled it yet. You cannot publish such an event instance
because it would conflict with the event-passing mechanism of the QF discussed ear-
lier. This mechanism prohibits, among other things, intercepting events and publish-
ing them again. To remember whether it is in use, every event stores the number of
uses in the useNum attribute, which must be 0 for an unused event (Sections 8.5.3
and 8.5.4).

Listing 8.4 QF::publish() method

Finding a subscriber list corresponding to the signal of the event (e->sig) is fast
thanks to an efficient table lookup (Listing 8.4, line 4). An empty subscriber list indi-
cates that the signal has no subscribers, and to avoid an event leak, the routine must
annihilate the event immediately (line 12). If the signal has subscribers, the routine
extracts the first subscriber (the subscriber with the highest priority) from the least
significant bits of the subscriber list (line 6). Subsequently in line 8, the method
asserts that the subscriber indeed has been registered by the framework (note that the
pkgActive[] array is in fact another mapping from priorities to active objects).
Finally, in line 9, QF::publish() places the event on the recipient’s event queue.27

Inserting an event into the recipient’s event queue in line 9 is associated with a
strategic contract. This contract declares a failure to enqueue an event (e.g., because
of an insufficient event queue size) a bug. In essence, this contract boils down to

 1 void QF::publish(QEvent *e) {
 2 REQUIRE(e->sig < locMaxSignal && // signal exceeding boundary
 3 e->useNum == 0); // event cannot be "in use"
 4 register QSubscrList sl = locSubscrList[e->sig]; //table look-up
 5 if (sl) { // any subscribers?
 6 register unsigned char p = (unsigned char)(sl & 0xF);
 7 e->useNum = 1; // the first use
 8 ASSERT(pkgActive[p]); // active object must have subscribed
 9 ALLEGE(pkgActive[p]->enqueue(e)); // queue cannot overflow!
10 }
11 else { // no subscribers
12 QF::annihilate(e); // do not leak the event
13 }
14 }

27. The concrete way of accessing an event queue depends on the platform-dependent implementation.

Passing Events 245
guaranteed event delivery28 because an event instance that is successfully placed in a
queue is guaranteed to be dispatched and eventually processed. Consequently, with
this contract in place, every publisher of an event can safely assume that all subscrib-
ers will receive the event. Note that the contract gives no guarantees as to the timeli-
ness of the delivery, only that the event will be delivered and eventually dispatched to
the state machines of all subscribers. Still, this guarantee can vastly simplify any
active object–based system because active objects often need to maintain mutual con-
sistency in their state.

For example in the dining philosophers problem (Chapter 7), the state of the
Table object must match the state of each Philosopher object. If a Philosopher
publishes the HUNGRY event (simultaneously entering the hungry state) and the event
is not delivered to Table (perhaps because Table’s event queue cannot accommo-
date it at the time), the Philosopher object will surely starve. The Table object will
never notice (by changing its state or setting an extended state variable) that the
Philosopher object is hungry, so it will never give it permission to eat. Without the
guarantee of delivery, a Philosopher object could try to retransmit the HUNGRY
event several times, to make sure that the Table object takes notice. (After all, a Phi-
losopher’s life is at stake.) This repetition would lead to immense complications in
the Philosopher as well as Table state machines because Table would have to dis-
tinguish between the original event and the retransmitted copies. The event delivery
guarantee avoids all this mess, at the much lower cost of properly sized event
queues.29

8.5.3 Multicasting Events

In the publish–subscribe mechanism of the QF, it is common for multiple active
objects (observers) to subscribe to the same signal. The mechanism is then supposed
to multicast identical copies of the event to all registered active objects simulta-
neously, much as a newspaper publisher is supposed to send out identical copies of a
newspaper to all subscribers.

Indeed, the QF keeps track of potential multiple subscriptions to any given signal
through the subscriber lists discussed earlier. However, QF::publish(), described in
Section 8.5.2, posts the event only to the first subscriber on the list (Listing 8.4, line
9), rather than to all subscribers at once, because the QF is frugal and avoids the
costly act of copying events. Instead, the QF circulates a single copy around to all the
subscribers. Nonetheless, on a single-processor machine running under a preemptive,

28. Strictly speaking, the contract in line 9 of Listing 8.4 only covers delivery to the highest priority subscriber.
However, event delivery to other subscribers is also consistently associated with a similar contract
(QF::propagate(), Listing 8.5).

29. Chapter 10 discusses the issues associated with sizing event queues.

246 Chapter 8: Design of the Quantum Framework
priority-based schedule (see Section 8.4), this more economical approach is indistin-
guishable from true multicasting.

A preemptive, priority-based scheduler allocates the CPU to the highest priority
thread ready to run. Suppose that the QF truly multicasts several copies of an event
to several active objects simultaneously. However, in a single-CPU system, only one
thread can execute at a time — the highest priority thread ready to run. After the
multicast, it is the highest priority subscriber to the event. It runs to completion and
relinquishes the CPU to the next highest priority subscriber, which again runs to
completion, and so on. This sequence continues until finally the lowest priority
active object on the subscriber list gets a chance to process the event. As you can see,
the scheduling algorithm automatically arranges sequential processing, in which only
one copy of the event is in use at any given time.

The QF arranges for an identical sequence of processing, as a preemptive, prior-
ity-based scheduler would. As you recall from Section 8.5.2, subscriber lists are
ordered in the descending order of subscriber priority. The first entry on the list (at
the lowest bit number) corresponds to the highest priority subscriber and is the first
active object that gets the event in the QF::publish() method. Subsequently,
QActive::run() (Listing 8.8 later in this chapter) propagates the event to the next
subscriber on the list by invoking QF::propagate().

Listing 8.5 QF::propagate() method

Listing 8.5 shows the implementation of QF::propagate(). First, in line 2, the
method checks the use number of the event, e->useNum. The number greater than
zero indicates that the event is in the middle of the just-described multicasting
sequence and needs to be propagated to the next subscriber. An e->useNum of 0, on
the other hand, indicates that the event is not intended for multicast (e.g., timeout

 1 void QF::propagate(QEvent *e) {
 2 if (e->useNum > 0) { // should QF propagate this event?
 3 ASSERT(e->sig < locMaxSignal); // signal must be in range!
 4 register QSubscrList sl = locSubscrList[e->sig];
 5 sl >>= (e->useNum*4); // shift out already serviced subscribers
 6 if (sl) { // more subscribers available?
 7 register unsigned char p = (unsigned char)(sl & 0xF);
 8 ++e->useNum; // next use
 9 ASSERT(pkgActive[p]); // active object must have started
10 ALLEGE(pkgActive[p]->enqueue(e)); // queue cannot overflow!
11 return; // event propagated
12 }
13 }
14 QF::annihilate(e); // event not propagated; don't leak it!
15 }

Passing Events 247
events fall into this category, see Section 8.8). Such events should be annihilated (line
14).

In line 3, the routine asserts that the signal of the event is in range. In line 4, the
routine obtains the subscriber list through the same table lookup as QF::publish().
In line 5, the subscriber list is right-shifted to put the current subscriber into the least
significant bit position. In addition, this shift automatically gets rid of the subscribers
serviced so far (they “fall off” the least significant bit). If the subscriber list is still not
empty (line 6), then QF::propagate() extracts the current subscriber priority in line
7 and increments the event use number, e->useNum, in line 8 to indicate the next use
of the event. Lines 9 and 10 are identical to lines 8 and 9 of QF::publish() (line 10
corresponds to the guaranteed event delivery strategic contract).

The sequential multicast mechanism implemented in QF::publish() and
QF::propagate() closely approximates a “true” simultaneous multicast only under
the following conditions. First, all subscribers must receive the same, unaltered event
instance. To this end, the signature of the state handler (Chapter 4) declares the event
immutable (QEvent const *e), which should prevent alterations to the event.30 Sec-
ond, the sequence of processing exactly follows the priorities of the subscribers only
if active objects do not block in the middle of RTC processing. Such blocking (gener-
ally a bad idea, see Section 8.4) could unpredictably change the processing sequence.
Finally, the sequence will be correct only under a preemptive, priority-based sched-
uler. The QF specifically addresses only this case because no other scheduling algo-
rithm gives a better task-level response; consequently, the preemptive, priority-based
scheduler is the most common choice for hard real-time systems. Other scheduling
algorithms that could be advantageous in “soft” real-time systems might result in
differences between true and sequential event multicasting; then again, these differ-
ences should be tolerable for meeting only soft deadlines.

8.5.4 Automatic Event Recycling

The requirement for automatic event recycling is a logical consequence of loose cou-
pling among producers of events (publishers) and consumers (subscribers). The pro-
ducers should not know or care who will subscribe to their events, including
situations when an event won’t be subscribed at all;31 in which case, the published
event simply leaks if not automatically recycled.

The event-passing mechanism in the QF has been designed up front with automatic
event recycling in mind. All events must funnel through only two framework meth-
ods. The first is QF::publish(), which recycles the event in the case of an empty

30. Alterations to a received event instance would be like scribbling in a book borrowed from a library.
31. Such a situation can arise easily in the early stages of modeling, when the application is simply incomplete.

248 Chapter 8: Design of the Quantum Framework
subscriber list (Listing 8.4, line 12). The other is QF::propagate(), which recycles
an event after the last subscriber on the list has processed it (Listing 8.5, line 14).

Listing 8.6 QF::annihilate() method

In both cases, the framework invokes QF::annihilate() (Listing 8.6). Client
code is not allowed to use the QF::annihilate() method directly (this method is
declared private in the QF class); rather, the clients must rely on automatic event
recycling. QF::annihilate() recycles pool events (e->poolId != 0, Section
8.5.1) differently than nonpool events. Pool events are always recycled to the pool of
their origin (line 4). The nonpool events (e->poolId == 0) are recycled by clearing
their use number (e->useNum).

8.6 Active Objects
From the client’s perspective, the most important step in constructing a QF-based
application is conceiving the concrete active object classes. As in all other active
object–based frameworks, the QF provides a base class for deriving concrete active
objects. In the QF, this base class is QActive. It combines the following three essen-
tial elements: (1) it is a state machine (derives from the QHsm class),32 (2) it has an
event queue, and (3) it has an execution thread. The class diagram in Figure 8.5
shows the relationships among these classes.

8.6.1 Internal State Machine

Every concrete active object is a state machine because it descends indirectly from
the QHsm base class, making the whole power and convenience of the behavioral
inheritance meta-pattern (the subject of Part I of this book) immediately available
for constructing the behavior of active objects. At the application level, you can
mostly abstract away all the other aspects of an active object and view it only as a

 1 void QF::annihilate(QEvent *e) {
 2 if (e->poolId) { // is it a pool event?
 3 ASSERT(e->poolId <= MAX_POOL && locPoolPtr[e->poolId]);
 4 locPoolPtr[e->poolId]->put(e); // return event back to the pool
 5 }
 6 else { // this is not a pool event
 7 e->useNum = 0; // recycle event by clearing the number of uses
 8 }
 9 }

32. For systems with very constrained resources, you might consider deriving QActive from the simpler, nonhier-
archical state machine QFsm (Chapter 3) rather than from QHsm.

Active Objects 249
state machine. This abstraction is possible because other elements of an active
object, like the event queue or execution thread, work transparently behind the
scenes to nurture the embedded statechart with events and CPU cycles.

One of the biggest advantages of the QF is the support for rapid construction of
executable models. The framework helps you to put together active objects that
make up the application quickly and then to elaborate gradually their internal details
(mostly their state machines), keeping the application executable at all times.

8.6.2 Event Queue

Event queues are essential components of any active object–based framework
because they allow you to reconcile the asynchronous production of events with the
RTC semantics of their consumption. An event queue makes the corresponding
active object appear always to be receptive to events, even though the internal state
machine can accept events only between RTC steps. Additionally, the event queue
provides buffer space that protects the internal statechart from bursts in event pro-
duction that can, at times, exceed the available processing capacity.

You can view the active object’s event queue as an outer rind that provides an
external interface for injecting events into the active object, protecting the internal
statechart during RTC processing at the same time. To perform these functions, the
event queue must allow any thread of execution (as well as ISR) to asynchronously
insert events, but only one thread — the local thread of the active object — needs to
be able to extract events from the queue.33 In other words, the event queue in the QF
needs multiple-write, but only single-read, access (Figure 8.6).

Figure 8.5 QActive class diagram

1

1myEqueue

myThread
- QActive()
start()
post()
stop()
- enqueue()

myEqueue
myThread
myPrio

«abstract»
QActive

Concrete
active objects

Philosopher Table

«abstract»
QHsm

QEQueue

Thread

33. This mechanism is known in GUI systems as the “message pump.”

250 Chapter 8: Design of the Quantum Framework
From the description so far, it should be clear that the event queue is quite a
sophisticated mechanism. One end of the queue — the end where producers insert
events — is obviously shared among many threads and must provide an adequate
mutual exclusion mechanism to protect the internal consistency of the queue. The
other end — the end from which the local thread extracts events — must provide a
mechanism for blocking this thread when the queue is empty. In addition, an event
queue must manage a buffer of events, typically organized in a FIFO structure.

As shown in Figure 8.6, the QF event queues do not store actual events, only
pointers to event instances. Typically, these pointers point to event instances allo-
cated dynamically from event pools (Section 8.5.1), but they can also point to stati-
cally allocated events. You need to specify the maximum number of event pointers
that a queue can hold at any one time (the capacity of the queue) in
QActive::start() (see the following section). The correct sizing of event queues
depends on many factors and generally is not a trivial task. Chapter 10 discusses siz-
ing event queues.

Many commercial RTOSs natively support a queuing mechanism in the form of
message queues (sometimes called mailboxes or message mailboxes). A message queue
typically maps well to the event queue described here. Standard message queues are
far more flexible than required by active objects because they typically support vari-
able-length data (not only pointer-sized data) and allow multiple-write as well as mul-
tiple-read access (the QF requires only single-read access). Usually, message queues
also allow blocking when the queue is empty and when the queue is full, and both
types of blocking can be timed out. (Naturally, all this extra functionality, which you
don’t really need, comes at an extra cost in CPU and memory usage.) Before you
accept the queuing mechanism provided in your RTOS, check how the RTOS imple-

Figure 8.6 Event queue of an active object holding pointers to event instances

«active»
ProducerA

ISR

«active»
Consumer

:Event
Pool

«active»
ProducerB

event queue

Internal
statechart of
the Consumer
active object

event
instances

Pointers to
event instances

:Event
Pool

Active Objects 251
ments mutual exclusion in the queue. The right way is to treat the message queue as
the first-class kernel object (like a semaphore for example) and to implement mutual
exclusion by briefly disabling interrupts. The problematic way is to protect the mes-
sage queue with a mutex, because this might lead to the priority inversion problem
discussed in Section 8.4.1.

In Chapter 9, you will find an example of an event queue built from a message
queue of an RTOS, as well as an example of an event queue implemented from
scratch.

8.6.3 Thread of Execution

Every active object in the QF executes in its own thread of execution.34 At some
point in the initialization sequence (Section 8.7.1), a QF application needs to call
QActive::start() on behalf of every concrete active object in the system to create
and start the execution thread associated with that object.

The QActive::start() method, which I mentioned in Section 8.3.2, is one of
the central elements of the framework. Unfortunately, it is also one of the most plat-
form-dependent methods, so Listing 8.7 shows only a pseudocode version.35

Listing 8.7 QActive::start() method (pseudocode)

The first argument of QActive::start() is the priority you must assign to the
active object. A high priority means high urgency and has relevance only relative to
other priorities. In the QF, every active object must have a unique priority, which you
must assign on startup and cannot change later. The QF uses a priority numbering
scheme in which priority 1 is the lowest and higher numbers correspond to higher

34. In some implementations of the QF, active objects can share a common thread of execution (I’ll show an exam-
ple in Chapter 9). However, the reference design presented here assumes a separate thread for every active
object.

35. Chapter 9 shows concrete implementations for specific platforms.

 1 void QActive::start(unsigned prio, QEvent*qSto[], unsigned qLen,
 2 int stkSto[], unsigned stkLen)
 3 {
 4 myPrio = prio; // store the priority in the attribute
 5 QF::add(this); // register "this" active object by QF
 6
 7 // create event queue "myEqueue" of length "qLen"
 8 // create execution thread "myThread" with priority "prio"
 9 // and stack size "stkLen"
10
11 // postcondition: assert proper creation of event-queue and thread
12 }

252 Chapter 8: Design of the Quantum Framework
priorities.36 If the underlying scheduler uses a different priority numbering scheme,37

then the concrete implementation of start() must remap the QF priority to the
priority required by the scheduler before invoking the platform-specific thread
creation routine (corresponding to line 8 in Listing 8.7).

Once started, all active objects execute the following thread routine (i.e., all active
object threads share the following code).

The comments in the signature of the thread routine are supposed to denote a
platform-specific calling convention (e.g., __cdecl, __near, __far, etc.), return
type, and other arguments potentially required by the underlying multitasking ker-
nel. Note that the thread routine is not a method of the QActive class because, typi-
cally, only a free function can serve as a thread’s entry point.38 On the other hand,
most RTOSs allow you to pass at least one generic pointer to the thread routine,
which QActive::start() uses to pass the active object.

Thread processing happens in QActive::run() (Listing 8.8). This method starts
by executing the initial transition (line 2) of the state machine associated with the
active object (see the QHsm::init() method in Chapter 4, page 107). This transi-
tion is an appropriate place to initialize extended state variables, subscribe to events,
initialize the hardware managed by the active object, and so on. Subsequently, the
thread routine enters a typical endless loop (line 3) of waiting for the event to arrive
through the event queue (line 4), before dispatching it for RTC processing through
the dispatch() method inherited from QHsm (line 5) and propagating it to other
subscribers (line 6). Propagating events is part of multicasting and automatic event
recycling, which are discussed separately in Section 8.5.3 and 8.5.4, respectively.

Listing 8.8 Thread routine of an active object

36. You can think of priority 0 as corresponding to the idle task, which has the absolute lowest priority not accessi-
ble to user threads.

37. For example, the VxWorks kernel Wind uses a numbering scheme in which priority 0 corresponds to the high-
est and 255 to the lowest priority tasks [WindRiver 97].

/* return type, calling convention */ run(void *a, /*... */) {
 ((QActive *)a)->run();
}

38. In the C version of the QF, you can use the “C+” class “method” directly because it is already a free function.

 1 void QActive::run() {
 2 QHsm::init(); // execute initial transition
 3 for (;;) { // for-ever
 4 QEvent *e = myEqueue->get(); // get event; block if queue empty

Initialization and Cleanup 253
Please note that all actions associated with the statechart embedded within the
active object (including the initial transition) execute in the thread context of the
host active object. Consequently, the stack allocated to the thread must be sized suf-
ficiently to accommodate the worst-case nesting of all the actions invoked from the
corresponding state handler methods.

Note: To minimize stack use, the behavioral inheritance meta-pattern specifically
avoids recursion (which is natural in hierarchical structures like HSM) and
judiciously sizes all automatic variables.

8.7 Initialization and Cleanup
Initialization and cleanup of a multithreaded application, such as a set of cooperat-
ing active objects, has two main aspects. The first — already discussed — is associ-
ated with allocating and recycling memory. The second — described in this section
— relates to starting up and shutting down multitasking.

8.7.1 Initializing the Framework

Before you can start active object–based multithreading, you need to perform a basic
initialization of the framework itself. You must invoke two methods: QF::init()
once and QF::poolInit() for each event pool you want to initialize. The following
code fragment illustrates this part of the initialization sequence for just one event
pool.

 5 dispatch(e); // dispatch event to the statechart
 6 QF::propagate(e); // propagate event to next subscriber
 7 }
 8 }

enum MySignals { // enumeration of all signals used in the system
 MY_SIG1 = Q_USER_SIG,
 . . .
 MAX_SIG // biggest signal ever used
};
static QSubscrList subscrSto[MAX_SIG]; // storage for subscriber lists
static MyBiggestEvt evtPoolSto[20]; // array capable of holding 20
 // biggest events
int main() {
 QF::init(subscrSto, MAX_SIG); // init. QF with storage for look-up
 QF::poolInit(evtPoolSto, sizeof(evtPoolSto)/sizeof(*evtPoolSto),
 sizeof(MyBiggestEvt)); // initialize event-pool
 . . .
}

254 Chapter 8: Design of the Quantum Framework
Please note the static allocation of storage for the subscriber list (subscrSto) and
event pool (evtPoolSto) and the subsequent passing of this memory over to the
framework. The QF::init() method is defined as follows.

Although correctly sizing the subscriber list lookup table is straightforward (it
must accommodate all signals in the system), QF::poolInit() (covered in Section
8.5.1) requires a more tricky decision — proper sizing event pools. In general, the
capacity of event pools is related to how many event instances you can “sink” in
your system, which is discussed in more detail in Chapter 10.

8.7.2 Starting the QF Application

Starting threads of execution associated with active objects can be problematic
because correct initialization can be very sensitive to the sequence and timing of
operations.

The QActive::start() method gives you the flexibility to start active objects in
any order. The thread created in start() is typically ready to run immediately, so
you must be cautious about potential preemption of the current thread by the newly
created active object thread. One way to eliminate preemption during the startup
phase is to lock the scheduler until all active objects are started (note that disabling
interrupts will not do the trick). Some multitasking kernels (e.g., µC/OS) allow you
to defer starting multitasking until after you start the active objects. Another alterna-
tive might be to start active objects from within other active objects, but this choice
increases coupling because the active object that serves as the launch pad must
“know” all active objects to be launched.

The signature of QActive::start() forces you to make two important decisions
for your application to be correct. The first concerns the relative priorities of the
active objects of your application. The second decision (which is related to the first)
concerns the size of the event queues you preallocated for the active objects. To make
these decisions correctly, you need to know the urgency of specific active objects (the
real-time constraints), as well as which kind of events they subscribe to (Chapter 10
covers these issues in more detail).

8.7.3 Gracefully Terminating the QF Application

If starting a multithreading application is tricky, then shutting it down gracefully is
very tricky. The problem is that the cleanest way to end an active object’s thread is to

void QF::init(QSubscrList subscr[], unsigned maxSignal) {
 locSubscrList = subscr; // point to the user-provided storage
 locMaxSignal = maxSignal; // remember look-up table boundary
 osInit(); // call OS-dependent QF initialization
}

Time Management 255
have it stop voluntarily either by returning from its thread routine, or by explicitly
calling QActive::stop().39 Of course to “commit suicide,” in that way, the active
object must not block (on its own event queue, for example). In addition, before dis-
appearing, the thread should release all the resources acquired during its lifetime.
Unfortunately, making a thread stop voluntarily cannot be preprogrammed generi-
cally at the framework level and always requires some work on the application pro-
grammer’s part.

Because the active object’s thread routine is organized into an infinite loop (List-
ing 8.8), the preferred way to end a thread is to call QActive::stop() from within
the thread. Perhaps the best place to invoke this method is the entry action of the
explicit final state (see Section 5.1.3 in Chapter 5).

You can use QActive::stop() to terminate one active object at a time. Com-
plete shutdown of the whole application, however, requires waiting until the last
active object voluntarily stops; only then is the shutdown process complete. This is
perhaps the most difficult aspect of the process (how would you know which object
is the last?). The shutdown of an application is very important for desktop applica-
tions, to be sure, but much less so in embedded systems. The embedded programs
almost never have a need to shutdown gracefully because the job of the typical
embedded application is never finished. Most embedded applications have to con-
tinue as long as the power is on. Therefore, you can simply ignore the graceful shut-
down process in most cases.

Note: “Application shutdown” here means complete termination of the embed-
ded application. Entering the “sleep mode” that many embedded devices
have is considered just another mode (state) of the application and doesn’t
count as a complete shutdown.

8.8 Time Management
Time management available in traditional real-time kernels includes timed blocking
on various kernel objects (e.g., semaphores, message queues), delaying a calling
thread (sleep()), and invoking a user-provided callback function after a specified
delay using various timers (signals). These mechanisms are not very useful in active
object–based systems.40

39. The concrete implementation of QActive::stop() strongly depends on the underlying operating system.
40. Timed blocking on a semaphore might be applicable when blocking an active object thread not related to other

active objects (Section 8.4.2).

256 Chapter 8: Design of the Quantum Framework
Instead, to be compatible with active object–based multithreading, time manage-
ment must be based on a general paradigm in which every interesting occurrence
manifests itself as an event instance. A clock device capable of generating event
instances periodically at every clock tick matches this paradigm very well. In fact,
every real-time system (regardless of whether it’s based on traditional or active
object–based multithreading) requires a clock, which typically is an external oscilla-
tor that interrupts the CPU at a predetermined (often programmable) rate.41

8.8.1 QTimer Class

The QF manages time through timers instantiated from the QTimer class. The basic
usage model of these timers is as follows. An active object allocates one or more
QTimer objects (provides the storage for them). When the active object needs to
arrange for a timeout, it arms one of its timers to fire a timeout event. The timer pro-
vides two methods for that purpose: QTimer::fireIn() for a one-shot timeout and
QTimer::fireEvery() for a periodic timeout event. Each timeout request has a dif-
ferent timer, so a QF application can make multiple parallel requests (from the same
or different active objects). When the QF detects that the appropriate moment has
arrived, it inserts the requested timeout event directly into the recipient’s event
queue. The recipient then processes the timeout event just like any other event.

To arm a timer, an active object must provide its this pointer, the timeout signal
to deliver, and the number of clock ticks to elapse before delivery. The one-shot
request (fireIn()) disarms the timer automatically after firing the event. The peri-
odic timer (armed with fireEvery()), on the other hand, automatically rearms the
timer by every timeout for the next shot. You can explicitly disarm any armed timer
(periodic or one-shot) at any time by means of the QTimer::disarm() method.
After disarming (explicitly or implicitly, as in the case of the one-shot timeout), the
timer can be reused for one-shot or periodic timeouts. In addition, as long as the
timer remains armed it can be rearmed with a different number of ticks through
QTimer::rearm(). For one-shot timers, rearming is useful, for example, to imple-
ment watchdog timers that need to be periodically “tickled” to prevent them from
ever timing out. Rearming might also be useful to adjust the phasing of periodic tim-
ers (often you need to extend or shorten one period).

Arming a timer is very much like subscribing to an event. One significant differ-
ence is that timeout events are not published globally; rather, they are delivered
locally only to the requesting active object. This policy promotes loose coupling
among active objects. For example, two different active objects can arm two separate
timers to deliver the same signal (say, TIMEOUT_SIG); yet, each object will receive
only the requested timeout event, rather than both events.

41. Typical clock rates lie between 5 and 100Hz.

Time Management 257
8.8.2 Clock Tick, QF::tick() Method

To service the armed timers, you need to periodically invoke QF::tick(), preferably
from the clock tick interrupt. This method (Listing 8.9) manages the open-ended
linked list of timers.

Listing 8.9 QF::tick() method

At every clock tick, QF::tick() scans the linked list of timers (Listing 8.9, line 4)
and decrements the myCtr down-counter of each timer in the list. When the counter
drops to 0, the routine inserts the requested event into the recipient’s event queue
(line 7). As usual, this operation is associated with the guaranteed event delivery con-
tract. For a periodic timer (with a non-0 myInterval), the routine rearms the myCtr
down-counter to the interval value myInterval (line 9). Otherwise, it is a one-shot
timer and must be disarmed (lines 12–20). Disarming the timer corresponds to
removing it from the linked list. However, because it is only a unidirectional (single-
linked) list, the additional pt (previous timer) pointer is necessary.

 1 void QF::tick() {
 2 register QTimer *t, *pt;
 3 QF_ISR_PROTECT();
 4 for (t = pt = locTimerListHead; t; t = t->myNext) {
 5 if (--t->myCtr == 0) {
 6 // queue cannot overflow
 7 ALLEGE(t->myActive->enqueue(&t->myToutEvt));
 8 if (t->myInterval) { // periodic timer?
 9 t->myCtr = t-> myInterval; // rearm the timer
10 pt = t;
11 }
12 else { // one-shot timer, disarm by removing from the list
13 if (t == locTimerListHead) {
14 locTimerListHead = pt = t->myNext;
15 }
16 else {
17 pt->myNext = t->myNext;
18 }
19 t->myActive = 0; // mark the timer free to use
20 }
21 }
22 else {
23 pt = t;
24 }
25 }
26 QF_ISR_UNPROTECT();
27 }

258 Chapter 8: Design of the Quantum Framework
The QF::tick() method is primarily designed for invocation from the interrupt
context. For most embedded platforms, the macros QF_ISR_PROTECT() and
QF_ISR_UNPROTECT() (Listing 8.9, lines 3 and 26) can translate to nothing because
an ISR is always safe from preemptions by a task. For some platforms (e.g., Win-
dows), however, you don’t have easy access to the clock tick interrupt and you are
forced to invoke QF::tick() from a task context (Chapter 9). A critical section is
necessary in this case.

8.9 QF API Quick Reference
As a client of the QF, you need to be concerned only with three framework classes:
the QF class, the QActive base class for derivation of concrete active objects, and the
QTimer class for instantiating timers.42 This section briefly summarizes the QF API.

8.9.1 QF Interface

The QF class encapsulates all top-level QF services. The class is unusual (Listing 8.10)
because it has only static member functions and no data members. Such a class has
only one instance and is equivalent to a module.43 The use of a C++ class here is only
to group related functions to avoid pollution of the global namespace. A specific QF
namespace is not used because some older and embedded C++ (EC++) compilers
don’t support namespaces [EC++ 01]. Table 8.1 summarizes the public interface of
the QF class.

Listing 8.10 QF class declaration

42. The other interesting class QEvent has no methods and so it’s not described here.
43. The QF class specifically does not use the Singleton design pattern because it has no need for extensibility by sub-

classing and the additional cost of accessing the Singleton via the instance() method is not justified.

 1 class QF {
 2 public:
 3 static char const *getVersion();
 4 static void init(QSubscrList subscr[], unsigned maxSignal);
 5 static void poolInit(void *poolSto,
 6 unsigned nEvts, unsigned evtSize);
 7 static void tick();
 8 static QEvent *create(unsigned evtSize, QSignal sig);
 9 #define Q_NEW(evtT_, sig_) \
10 ((evtT_ *)QF::create(sizeof(evtT_), (sig_)))
11 static void subscribe(QActive *a, QSignal sig);
12 static void unsubscribe(QActive *a, QSignal sig);
13 static void publish(QEvent *e);

QF API Quick Reference 259
Table 8.1 Brief summary of public QF methods

14 static void background(); //for foreground/background systems only
15 static void cleanup();
16 private: // internal interface for QActive only
17 static void osInit(); // OS-dependent initialization
18 static void osCleanup(); // OS-dependent cleanup
19 static void add(QActive *a); // register an active object
20 static void remove(QActive *a); // unregister an active object
21 static void propagate(QEvent *e); // propagate to next subscriber
22 static void annihilate(QEvent *e); // annihilate an event instance
23 friend class QActive;
24 };

Method Description

getVersion() Return pointer to an immutable version string.

init()
Initialize the framework (requires memory for the subscriber
list lookup table). Must be invoked only once.

poolInit()

Initialize the event pool (requires a memory buffer for the
pool). Can be invoked several times to initialize event pools
of different sizes.

tick()
Process one clock tick (should be called periodically from the
clock tick ISR).

create()

Dynamically create an event instance of the specified size.
Running out of free events in an event pool causes a contract
violation. This method should be used through the Q_NEW()
macro, not directly.

subscribe()

Subscribe to a specified signal (should be called by an active
object). Multiple active objects can subscribe to the same sig-
nal.

unsubscribe()

Unsubscribe a specified signal (should be called by the sub-
scriber active object). Unsubscribing a signal that is not sub-
scribed by the given active object causes a contract violation.

publish() Publish an event (can be called from a task or interrupt).

background()
Perform background processing (defined only for
foreground/background systems, see Chapter 9).

cleanup()
Perform a platform-dependent cleanup (should be called only
on application exit).

260 Chapter 8: Design of the Quantum Framework
8.9.2 QActive Interface

The QActive class is the abstract base class for deriving the concrete active
objects. As shown in Listing 8.11, QActive derives from QHsm and thus inherits
HSM functionality (described in Part I). Table 8.2 summarizes the public and pro-
tected methods that QActive adds to the QHsm interface.

Listing 8.11 QActive class

 1 class QActive : public QHsm { // Quantum Active Object base class
 2 public:
 3 int start(unsigned prio, QEvent *qSto[], unsigned qLen,
 4 int stkSto[], unsigned stkLen);
 5 void postFIFO(QEvent *e); // post event directly (FIFO enqueuing)
 6 void postLIFO(QEvent *e); // post event directly (LIFO enqueuing)
 7 void run(); // run() is active throughout lifetime of the object
 8 protected:
 9 QActive(QPseudoState initial); // protected ctor
10 virtual ~QActive(); // virtual xtor
11 void stop(); // stopps the thread; nothing happens thereafter!
12 private:
13 int enqueue(QEvent *e); // intended to use only by friend class QF
14 private: // data members...
15 QF_EQUEUE(myEqueue) // OS-dependent event-queue primitive
16 QF_THREAD(myThread) // OS-dependent thread primitive
17 unsigned char myPrio; // priority of the active object
18 friend class QF;
19 };

QF API Quick Reference 261
Table 8.2 Brief summary of public and protected QActive() methods

Method Description

QActive()

The QActive constructor, which like the QHsm constructor, takes
the initial pseudostate handler as the argument. The constructor
is protected to prevent direct instantiation of the QActive class
(the class is abstract, i.e., intended only for inheritance).

start()

Explicitly start an active object thread of execution. The caller
needs to assign a unique priority to every active object in the sys-
tem (assigning a priority that has already been used causes a con-
tract violation). The priority must conform to the numbering
scheme of QF and not to the priority numbering scheme of the
underlying operating system. The lowest priority accessible to
active objects is 1; higher priorities correspond to higher urgency.
The caller also needs to commit memory for the event queue and
for the execution stack. Some platforms allocate this memory
internally, in which case the concrete implementation of the
method could require passing NULL pointers for event queue stor-
age, execution stack storage, or both. The start() method trig-
gers the initial transition in the active object’s HSM.

postFIFO()

Post an event directly to the active object’s event queue using the
FIFO policy. The primary intention of this method is to enable
the Reminder state pattern (Chapter 5, Section 5.2) and to send
notifications from aggregated components to the active object’s
state machine (Chapter 5, Section 5.4).

postLIFO()

Post an event directly to the active object’s event queue using the
LIFO policy. The primary intention of this method is to enable
the Reminder state pattern (Chapter 5, Section 5.2) and to send
notifications from aggregated components to the active object’s
state machine (Chapter 5, Section 5.4).

stop()

Stop the execution thread associated with the active object and
unsubscribe all signals. The stop() method should be invoked
from the context of the terminating active object. Caution: con-
trol never returns to the calling thread in this case.

262 Chapter 8: Design of the Quantum Framework
8.9.3 QTimer Interface

The QTimer class (Listing 8.12) is a helper class intended to be used as is, without
modifications. Active objects can allocate an open-ended number of timer objects. As
with any other object, timers should not be shared. Only the armed timers consume
CPU cycles. Table 8.3 summarizes the public methods of the QTimer class.

Listing 8.12 QTimer class

Table 8.3 Brief summary of the public QTimer interface

 1 class QTimer {
 2 public:
 3 QTimer() : myActive(0) {} // default ctor
 4 void fireIn(QActive *act, QSignal sig, unsigned nTicks);
 5 void fireEvery(QActive *act, QSignal sig, unsigned nTicks);
 6 void disarm();
 7 void rearm(unsigned nTicks);
 8 private:
 9 void arm(QActive *act, QSignal sig, unsigned nTicks);
10 private:
11 QTimer *myNext; // to link timers in the list
12 QEvent myToutEvt; // timeout event instance to send
13 QActive *myActive; // active object to send the timeout event to
14 unsigned short myCtr; // running clock-tick downcounter
15 unsigned short myInterval; // interval for periodic-timer
16 friend class QF;
17 };

Method Description

fireIn()

Arm a timer for a single shot in nTicks number of clock
ticks. After timing out, the timer is automatically dis-
armed and can be reused. Arming a timer that has already
been armed causes a contract violation (precondition fail-
ure).

fireEvery()

Arm a timer to fire periodically every nTicks number of clock
ticks. A periodic timer is automatically rearmed by every time-
out. Arming a timer that has already been armed causes a con-
tract violation (precondition failure).

Summary 263
8.10 Summary
The design of the Quantum Framework (QF) addresses the particular needs of
embedded real-time systems dedicated to a specific function that requires timely
responses to external events.

Embedded real-time systems necessitate different programming strategies than
general-purpose computers such as desktop PCs. Many established programming
techniques and rules of thumb from the desktop are not only inadequate but harmful
to the majority of embedded real-time applications. The QF carefully avoids tech-
niques that can be problematic in embedded systems and uses policies that allow you
to take advantage of the specific nature of embedded systems programming.

The QF policy for error and exception handling hinges on the observation that,
compared to the desktop, the specifics of embedded systems allow you to flag many
more situations as errors (which need to be found and fixed, but not handled) than
as exceptional conditions (which require handling). To facilitate finding and fixing
errors (bugs), the QF consistently applies DBC. To handle exceptions, the QF pro-
poses using state machine–based exception handling instead of the programming
language–based technique of throwing and catching exceptions.

The basic design philosophy of the QF with respect to memory management is
not to commit any memory internally but leave to the clients the instantiation of any
framework-derived objects and the initialization of the framework with memory that
it needs for operation. This policy allows you to completely avoid the heap (free
store), which often causes problems in embedded real-time systems.

disarm()

Disarm an armed timer (one-shot or periodic) so that it
doesn’t fire a timeout event. The caller must not assume
that no more timeouts arrive after the call because some
timeouts could still be in the event queue. Disarming an
unarmed timer causes a contract violation (precondition
failure).

rearm()

Rearm an armed timer to fire in nTicks number of clock
ticks. The method affects only the next shot and does not
change the interval of a periodic timer; that is, rearming a
periodic timer changes its phasing but not its period. The
number of nTicks is arbitrary (but positive) and could
exceed the interval (so the method allows both extending
and shrinking the next tick). Rearming an unarmed timer
causes a contract violation (precondition failure).

Method Description

264 Chapter 8: Design of the Quantum Framework
The QF implementation uses only safe (deterministic) mutual exclusion mecha-
nisms (i.e., briefly disabling interrupts) and avoids mutual exclusion semaphores
(mutexes) because they can lead to priority inversions. The QF design carefully mini-
mizes the need to block the execution threads associated with active objects. In par-
ticular, the QF never blocks active objects when extracting events from event pools
or when inserting events to event queues.

The event-passing mechanism of the QF is a publish–subscribe architecture with
dynamic event allocation, automatic event recycling, and event multicasting (in case
of multiple subscriptions). This design enables the rapid construction and execution
of intentionally incomplete applications. For example, publish–subscribe event deliv-
ery does not require you to specify the recipients of events, so an application will
compile even if some active objects (recipients of events) are missing. Similarly, auto-
matic event recycling allows applications to execute correctly (without memory
leaks) even if some published events are never received.

As in all active object–based frameworks, the QF provides an abstract base class,
QActive, to derive concrete active objects. QActive inherits the passive event pro-
cessor from the QHsm class and augments it with an event queue and a thread of exe-
cution. Constructing the QF applications consists mainly of deriving concrete active
objects and elaborating their internal state machines.

The QF manages time through timer objects (timers) that generate timeout events
for active objects. Active objects can arm the timers to obtain either a single timeout
(a one-shot timer) or a periodic series of timeout events (a periodic timer). Each tim-
eout request has a different timer, so a QF application can make multiple parallel
timeout requests (from the same or different active objects).

Overall, the QF represents a minimal and efficient realization of the active object–
based computing model tailored specifically for embedded real-time systems. The
design avoids all potentially risky programming techniques internally but does not
limit the application designer to only these techniques. The framework has a small
memory footprint and executes the applications deterministically. It can be embed-
ded in commercial products.

9

Chapter 9

Implementations of the

Quantum Framework

There is no trick in building large systems quickly; the
quicker you build them, the larger they get!
— David Parnas

In this chapter, I present concrete implementations of the QF design described in the
previous chapter. The primary goal is to fill in the missing platform-dependent pieces
of the framework so that you have the complete code ready to use in your applica-
tions. This chapter approaches the dilemma — which platform to choose — by
describing not one but three implementations of the QF on different platforms. I
have chosen diverse platforms to demonstrate how to adapt the QF to a wide range
of applications because my secondary goal in this chapter is to show you how to port
the QF to the environment of your choice.

I cover the following three concrete implementations of the QF in this chapter.
• DOS — I demonstrate the use of the QF in a foreground/background environ-

ment without any underlying multitasking kernel. This implementation could be
applicable to simpler embedded systems.
265

266 Chapter 9: Implementations of the Quantum Framework
• Windows (32-bit) — I demonstrate the use of the QF in the multithreading envi-
ronment of a desktop computer, which could be interesting for cross-develop-
ment, testing, and debugging embedded applications.

• RTKernel-321 — This real-time kernel for Intel x86 processors runs in 32-bit pro-
tected mode and demonstrates the use of the QF in a true, real-time, multithread-
ing environment with full RTOS support.
As you can see, the implementations span quite a wide range, and most of the sys-

tems should fall into one of these broad categories. The platforms have been specifi-
cally chosen so that you can use familiar development tools2 and execute the code on
your desktop PC. For the 32-bit Windows and RTKernel-32 ports, I used Microsoft
Developer Studio v6.0 for both compiling and debugging (cross-debugging in the
case of RTKernel-32). For DOS, I used Visual C++ v1.52. I believe that these choices
offer the best prospects for you to experiment with the code.

9.1 The QF as a Parnas Family
It is unnecessary and rarely makes business sense3 to make every application general
and portable. In fact, it often does more harm than good, especially in the embedded
real-time domain, where each product has unique hardware and software con-
straints. At the same time, every application offers specific opportunities for simplifi-
cation that are lost when you generalize the case. However, this area is exactly where
an application differs from a framework. A framework is supposed to capture and
explicitly separate commonalities (assumptions that don't change) from variabilities
(assumptions that do change). In the domain of embedded real-time systems, plat-
form diversity is exactly the most important variability that a framework, such as the
QF, should address up front.

In his seminal paper, David Parnas [Parnas 76] proposed a way to anticipate vari-
ability by designing and implementing an entire family of related products (the Par-
nas family). Parnas argues that program development is essentially a path down a
decision tree, with each node corresponding to a design decision. Decisions toward
the top of the tree are the hardest to change because they require the most backtrack-
ing. The trick (and challenge) in designing such a tree is to put near its root those
design decisions that are less likely to change (the commonalities).

1. RTKernel-32 is a product of On Time Software. A fully functional evaluation version of this product, as well as
documentation, is available on the accompanying CD-ROM.

2. Throughout this book, I assume that you use Microsoft Visual C++ v6.0. Porting the QF to DOS requires a dif-
ferent (16-bit) compiler. However, because of the tremendous popularity of DOS, I hope that you can find an
older C/C++ compiler for DOS relatively easily.

3. A good rule of thumb is that reusable components will take twice the effort of a one-shot component [Yourdon
92].

Code Organization 267
In Chapter 8, I constructed the root of the QF design tree by extracting the com-
monalities in the QF design. In this chapter, I concentrate on the branches and leaves
of the tree. These elements are formed by the concrete QF ports, which all make a
small Parnas family of the QF.

9.2 Code Organization
Portable code is significantly more difficult to organize than code intended for
deployment on a single platform. The difficulties stem from the code structure (both
logical and physical partitioning into files) that needs to explicitly separate the com-
monalities from the variabilities.

The main objective is to deploy the QF as a platform-dependent, fine-granularity
class library that clients statically link to their applications. Platform dependence
means that on each platform you use different files; for example, on the Win32 plat-
form, you use the qf_win32.h header file and the qf_win32.lib library file; on the
DOS platform you use the qf_dos.h header file and the qf_dos.lib library file. All
the platform-depended header files include a platform-independent (common) header
file, qf.h. Similarly, most modules of the library are built from platform-indepen-
dent (common) source files. However, each port also includes specific platform-
dependent elements. Fine granularity means that the QF library contains several
loosely coupled modules (object files), rather than a single module that contains all
functionality. For example, a separate module implements the QF timers; therefore,
if your application does not use timer services, the linker does not pull in the timer
module. The strategy is to exclude unused parts automatically at link time, rather
than to specifically configure and rebuild the framework code for each application.

Each QF port is an adaptable library that does not need to be custom tailored for
individual applications on the given platform. You can distribute such a library in a
binary format without necessarily disclosing the source code. To this end, the mem-
ory management policy of the QF mitigates many traditional reasons for source-level
customization. For example, the QF does not need to be preconfigured with a spe-
cific number of execution threads, event queues, or timers because the QF does not
preallocate memory internally4 (it leaves the memory configuration to the applica-
tion — Section 8.3.2 in Chapter 8). This policy avoids wasting memory for the over-
allocated (preallocated but unused) objects.

This flexibility comes at a price. Specific types of private objects used internally
must be revealed to the application level. For instance, the QF internally uses a data
type describing the execution thread (inside the QActive class). QF applications do

4. The µC/OS real-time kernel [Labrosse 92a, 92, 99] is an example of a system that internally preallocates mem-
ory for kernel objects.

268 Chapter 9: Implementations of the Quantum Framework
not need to know or care that such a data type even exists; that is, the applications
wouldn’t care except that they need to instantiate concrete active objects that contain
thread instances inherited from QActive. The application code becomes dependent
on the details of the framework base classes because, ultimately, the application has
to allocate the memory (preferably statically) for all objects. To do so, the C/C++
compiler needs to know the size of each object [Stroustrup 91]. In comparison, sys-
tems that preallocate internal objects can better hide platform dependencies and can
expose only the platform-independent interface in the header files.

Listing 9.1 Declaration of platform-dependent data members of the QActive class

To be more specific, consider again the framework class QActive. As shown in
the class diagram in Figure 8.5 (Chapter 8), QActive aggregates by composition a
thread of execution (the myThread attribute) and event queue (the myEqueue
attribute). These objects are platform dependent; yet, they must be fully specified in
the QActive class, not preallocated and hidden inside the framework. Listing 9.1
shows a simple solution that is to declare the platform-dependent data members as
preprocessor macros QF_EQUEUE() and QF_THREAD(). These macros are defined in
a platform-specific public header file, qf_platform.h.

The QActive class illustrates the way this design handles variability (in this case,
platform dependence) in the physical structure of the QF code. The variations
are extracted in the form of header files and macros, which are then specialized
for each platform.5

9.2.1 Directory Structure

Figure 9.1 shows the annotated directory structure of the QF source code. Generally,
the code for each QF port consists of three parts.
1. Public header file (e.g., Cpp/Qf/Include/qf_win32.h)

#include "port.h" // platform-dependent package-scope interface

class QActive : public QHsm { // Quantum Active Object base class
public:
 . . .
private: // data members...
 QF_EQUEUE(myEqueue) // OS-dependent event-queue object
 QF_THREAD(myThread) // OS-dependent thread object
 unsigned char myPrio; // priority of the active object
 friend class QF;
};

5. Conditional compilation (using preprocessor commands #if–#elseif–#else–#endif) is another common
way to handle platform dependencies. I try to avoid using this method.

Code Organization 269
2. Platform-independent header and implementation files
(Cpp/Qf/Source/qfpkg.h and Cpp/Qf/Source/*.cpp)

3. Platform-dependent header and implementation files
(e.g., Cpp/Qf/Win32/port.h and Cpp/Qf/Win32/win32.cpp)

This structure uses two levels of header files. The public scope header file (e.g.,
Cpp/Qf/Include/qf_win32.h) provides the platform-dependent interface to the QF
library. The package scope–level interface (e.g., Cpp/Qf/Win32/port.h) includes the
public header file and specifies the additional interface (dependencies among QF mod-
ules) that is required to build the QF port.6 Both platform-independent and -depen-
dent implementation files (although located in different directories) belong to the
same QF package, and all these modules include the package scope header file
port.h.

All platform-independent QF source files (in the directory Cpp/Qf/Source)
include the header file port.h without specifying a concrete directory (#include
"port.h"). The concrete version of port.h is chosen automatically by building the
QF library in a specific directory (e.g., Cpp/Qf/Win32 for the Win32 port). The
build combines source (.cpp) files from two directories: the current platform-depen-
dent directory (.) and the platform-independent directory (../Source). Typically,
you redirect compiler output into a separate build directory (e.g., ./Release). Fur-
thermore, you must instruct the compiler to include header files from three directo-
ries: the current directory (.), the public include directory (../Include), and the
source directory (../Source).7 Note also that both the source code and the build
process (the makefiles) use only relative paths with respect to the current directory.
This convention allows you to place the QF branch at any level of your particular
directory tree without modifying the source code or the makefiles.8

9.2.2 Public Scope Header File

Listing 9.2 shows an example of a public scope header file (the platform-dependent
QF interface) for the Win32 QF port. The header file starts with the usual protection
against multiple inclusion (lines 1–2, 21). In line 4, the file includes the header of the
underlying operating system (<windows.h> in this case). Lines 7 through 9 define
macros, specifying the concrete, platform-dependent data members: the execution
thread, the event queue, and the OS event9 objects (Section 9.5.1). Finally, lines 13

6. The division of the interface into package scope (wide) and public scope (narrow) reflects high cohesion within
the package and loose coupling to the outside world.

7. Most C/C++ compilers allow you to specify multiple include directories (typically through the -I option).
8. Figure 9.1 also demonstrates how you can replicate the same directory structure for multiplatform QF applica-

tions (e.g., see the structure of the QDPP directory).
9. An OS event object is a platform-dependent attribute of the event queue class (Section 9.3.3) that blocks the

active object thread when the queue is empty.

270 Chapter 9: Implementations of the Quantum Framework
through 19 include various elements of the QF. Note that not all ports require you to
include all elements. For example, the RTKernel-32 port (discussed in Section 9.6)
does not need either an event queue (qequeue.h) or an event pool (qepool.h)
because these elements are based on the native implementation of the underlying
RTOS (RTKernel-32).

Figure 9.1 Directory structure and files for multiplatform deployment of QF

libraries and QF applications

Include

Source

Qassert.h
Qactive.h
Qepool.h
Qequeue.h
Qevt.h

Qf_dos.h
Qf_rtk32.h
Qf_win32.h
. . .

Qf.h
Qfsm.h
Qhsm.h
Qtimer.h

Qf.cpp
Qfsm.cpp
Qhsm.cpp

DOS (port)

port.hdos.cpp

win32.cpp

Relase

qf_win32.lib

qf_dos.lib

Qtimer.cpp
Qfpkg.h

Win32 (port)

QCalc (QF application)

QDPP (multiplatform QF application)

calc.cpp calc.h

DOS (port)

dos.cpp port.h

Include

Source

Qdpp.h

Qdpp.cpp

Cpp (C++ code)

C (C code)

QF (Quantum Framework)

platform-
dependent
package scope
header files

#include "qf_win32.h"
. . .

#include "qf_dos.h"
#include "qdpp.h"

other
application
ports

other QF
applications

other
QF ports

platform-
dependent
source fles

platform-
independent
source files

public scope
header files

platform-
dependent
public scope
header files
for QF ports

platform-
independent
pakcage scope
header file

Qactive.cpp
Qepool.cpp
Qequeue.cpp

port.h

Code Organization 271
Listing 9.2 Public scope header file qf_win32.h for Win32 port

9.2.3 Package Scope Header File

Listing 9.3 shows an example of a package scope header file (wide interface) for the
Win32 QF port. All package scope headers include the public interface (line 4) and
the platform-independent package scope header file qfpkg.h (line 5). Subsequently,
the header file defines several macros that the shared implementation files (located in
the Cpp/Source directory, Figure 9.1) use to code platform-dependent operations.
The following sections explain these macros in detail.

Listing 9.3 Package scope header file Cpp/Win32/port.h for the Win32 port

 1 #ifndef qf_win32_h
 2 #define qf_win32_h
 3
 4 #include <windows.h>
 5
 6 // Win32-specific event object, event-queue and thread types...
 7 #define QF_OS_EVENT(x_) HANDLE x_;
 8 #define QF_EQUEUE(x_) QEQueue x_;
 9 #define QF_THREAD(x_) HANDLE x_;
 10 #define Q_STATIC_CAST(type_, expr_) static_cast<type_>(expr_)
 11
 12 // include framework elements...
 13 #include "qevt.h"
 14 #include "qhsm.h"
 15 #include "qequeue.h" // Win32 needs event-queue
 16 #include "qepool.h" // Win32 needs event-pool
 17 #include "qactive.h"
 18 #include "qtimer.h"
 19 #include "qf.h"
 20
 21 #endif // qf_win32_h

 1 #ifndef port_h
 2 #define port_h
 3
 4 #include "qf_win32.h"
 5 #include "qfpkg.h"
 6
 7 // Win32-specific critical section operations
 8 extern CRITICAL_SECTION pkgWin32CritSect;
 9 #define QF_PROTECT() EnterCriticalSection(&pkgWin32CritSect)
 10 #define QF_UNPROTECT() LeaveCriticalSection(&pkgWin32CritSect)
 11 #define QF_ISR_PROTECT() QF_PROTECT()

272 Chapter 9: Implementations of the Quantum Framework
9.3 Common Elements
In many ways, adapting the QF to a concrete computing environment is like porting
an RTOS to a different microprocessor architecture. Indeed, as described in Chapter
7, the QF is in a sense a replacement for a conventional RTOS. This section covers
the common platform-dependent elements of the QF, such as the critical section, the
event pool, and the event queue, which typically are provided in an RTOS but might
be missing in some implementations.

9.3.1 Critical Section

The QF, like a multitasking kernel, needs to perform certain operations indivisi-
bly. The simplest and most efficient way to protect a section of code from disrup-

 12 #define QF_ISR_UNPROTECT() QF_UNPROTECT()
 13
 14 // Win32-compiler-specific cast
 15 #define Q_STATE_CAST(x_) reinterpret_cast<QState>(x_)
 16
 17 // Win32-specific event queue operations
 18 #define QF_EQUEUE_INIT(q_) \
 19 ((q_)->myOsEvent = CreateEvent(NULL, FALSE, FALSE, NULL))
 20 #define QF_EQUEUE_CLEANUP(q_) CloseHandle((q_)->myOsEvent)
 21 #define QF_EQUEUE_WAIT(q_) \
 22 QF_UNPROTECT(); \
 23 do { \
 24 WaitForSingleObject((q_)->myOsEvent, INFINITE); \
 25 } while ((q_)->myFrontEvt == 0); \
 26 QF_PROTECT()
 27 #define QF_EQUEUE_SIGNAL(q_) \
 28 QF_UNPROTECT(); \
 29 SetEvent((q_)->myOsEvent)
 30 #define QF_EQUEUE_ONEMPTY(q_)
 31
 32 // Win32-specific event pool operations
 33 #define QF_EPOOL QEPool
 34 #define QF_EPOOL_INIT(p_, poolSto_, nEvts_, evtSize_) \
 35 (p_)->init(poolSto_, nEvts_, evtSize_);
 36 #define QF_EPOOL_GET(p_, e_) ((e_) = (p_)->get())
 37 #define QF_EPOOL_PUT(p_, e_) ((p_)->put(e_))
 38
 39 // the following constant may be bumped up to 15 (inclusive)
 40 // before redesign of algorithms is necessary
 41 enum { QF_MAX_ACTIVE = 15 };
 42
 43 #endif // port_h

Common Elements 273
tions is to disable interrupts on entry to the section and enable interrupts again on
exit. Such a section of code is called the critical section.

Note: The time spent in a critical section should be kept to a minimum because
this time directly affects the interrupt latency. However, as long as the criti-
cal sections introduced in the QF take no more time than when disabling
interrupts elsewhere in the system (e.g., inside the underlying kernel or
device drivers), the critical sections do not extend the maximum interrupt
latency. As you will see, the QF disables interrupts only very briefly, which
should not affect the maximum interrupt latency.

For portability of code, the QF defines entry to and exit from a critical section in
the QF_PROTECT() and QF_UNPROTECT()10 macros to protect and unprotect a criti-
cal section, respectively (Listing 9.3, lines 9, 10). The definition of these macros
depends on the platform and the compiler. For example, on the DOS platform (as on
most embedded platforms), the macros can directly switch interrupts off and on. For
the x86 microprocessor, use the following macros.

Here, the macros use in-line assembly to execute x86 instructions. The format is
specific to the Microsoft compiler. CLI (clear interrupt flag) and STI (set interrupt
flag) disable and enable interrupts, respectively. You could also use _disable() and
_enable(), both declared in <dos.h>, to achieve the same effect.

However, on some platforms, you cannot disable and enable interrupts easily, and
the operating system provides different ways of protecting indivisible sections of
code. For example, the package-level header file for the Win32 port shows the defini-
tion of the Microsoft Windows–specific implementation of the critical section (List-
ing 9.3, lines 9, 10).

9.3.2 Event Pool

In Chapter 8, I introduced the concept of an event pool — a fixed block–size heap
specialized to hold event instances. Some RTOSs natively support such fixed block–
size heaps (often called memory partitions or memory pools).11 However, many plat-
forms don’t. This section explains how to build your own event pool.

10. I used these macros in Chapter 8.

#define QF_PROTECT() __asm{cli}
#define QF_UNPROTECT() __asm{sti}

11. For example, RTKernel-32 supports fixed block–size memory pools, which is used later in this chapter to dem-
onstrate an RTOS-based implementation of event pools.

274 Chapter 9: Implementations of the Quantum Framework
Figure 9.2 Event pool data structure

As shown in Figure 9.2, the QEPool class manages a contiguous buffer of memory
that the clients use to preallocate storage for events. QEPool tracks memory by
chaining all unused memory blocks in a simple linked list (the free list). This tech-
nique is standard for organizing stack-like data structures, where the structure is
accessed like a stack in the LIFO manner from one end only.12 QEPool also uses a
handy trick to link free blocks together in the free list without consuming extra stor-
age for the pointers [Lafreniere 98, Labrosse 99]. By chaining together free (rather
than used) memory blocks, QEPool can reuse the blocks for other things, such as
linked list pointers. This use implies that the block size must be big enough to hold a
pointer.

Listing 9.4 QEPool event pool class declaration

Listing 9.4 shows the declaration of the QEPool class. This class provides three
methods — init(), get(), and put() — for pool initialization, event allocation,
and event recycling, respectively. Section 8.4.1 in Chapter 8 explains how the QF
uses these methods internally — class QEPool grants access to its private interface
only to the QF. The data members include the head of the free list (myFree), the
event size of this pool (myEvtSize), the total number of events in the pool (myNtot),

used

0

myFree

used

myEvtSize

myNtot

:QEPool

myNfree
user-allocated
buffer for events

12. See, for example [Eckel 95, chapter 1].

 1 class QEPool { // "Quantum" event-pool
 2 private:
 3 void init(QEvent *poolSto, unsigned nEvts, unsigned evtSize);
 4 QEvent *get(); // get an event from the pool
 5 void put(QEvent *e); // put an event back to the pool
 6 void *myFree; // head of the free-list
 7 unsigned short myEvtSize; // maximum event size (in bytes)
 8 unsigned short myNtot; // total number of events
 9 unsigned short myNfree; // number of free events remaining
 10 unsigned short myNmin; // minimum number of free events
 11 friend class QF;
 12 };

Common Elements 275
the current number of free blocks in the pool (myNfree), and the lowest number of
free blocks remaining in the pool (myNmin). This last attribute, called the low-water
mark, tracks the worst-case pool utilization, which like the worst-case stack utiliza-
tion provides a valuable data point for the final fine tuning of your application.13

Listing 9.5 QEPool class implementation

13. You can check the myNmin data member in the debugger or through a memory dump.

 1 void QEPool::init(QEvent *poolSto, unsigned nEvts, unsigned evtSize){
 2 REQUIRE(nEvts > 0 && evtSize >= sizeof(QEvent));
 3 myFree = poolSto; // set head of linked-list of free events
 4 myEvtSize = evtSize; // store maximum size of each event
 5 myNtot = nEvts; // store total number of events
 6 myNfree = nEvts; // store number of free events
 7 myNmin = nEvts; // initialize the minimum number of free events
 8 register char *block = (char *)poolSto;
 9 while (--nEvts) { // chain all blocks in the free-list...
 10 *(void **)block = (void *)(block + evtSize); // set the link
 11 block += evtSize; // advance to next block
 12 }
 13 *(void **)block = 0; // last link points to 0
 14 }
 15
 16 QEvent *QEPool::get() {
 17 register QEvent *e;
 18 QF_PROTECT();
 19 if (myNfree > 0) { // free events available?
 20 e = (QEvent *)myFree; // get free event
 21 myFree = *(void **)e; // adjust pointer to new free list
 22 if (--myNfree < myNmin) { // one less event in this pool
 23 myNmin = myNfree; // remember the minimum so far
 24 }
 25 }
 26 else {
 27 e = 0;
 28 }
 29 QF_UNPROTECT();
 30 return e; // return the event or NULL pointer to the caller
 31 }
 32
 33 void QEPool::put(QEvent *e) {
 34 QF_PROTECT();
 35 REQUIRE(myNfree < myNtot); // pool cannot be already full
 36 *(void **)e = myFree; // insert released event into free-list

276 Chapter 9: Implementations of the Quantum Framework
Listing 9.5 shows the complete implementation of the QEPool class. The init()
method (lines 1–14) takes three parameters: the pointer to the event buffer storage
(poolSto), the number of events in the pool (nEvts), and the block size of the pool
(evtSize) in units of bytes. To guarantee optimal alignment of the blocks in the
pool, you should allocate the event buffer as an array of concrete event objects (pick
the biggest event that you want to allocate from this pool).

In the precondition (Listing 9.5, line 2), init() asserts that at least one event is in
the pool — the following algorithm breaks if zero events occur — and that the event
size can hold at least the base class QEvent, which also means that the event can hold
a linked list pointer. The rest of the method initializes the pool attributes, and it
chains all memory blocks into a linked list (the free list). Note that internally, the
pool treats the free blocks as linked list pointers of type void*, not as events (sub-
classes of QEvent). Also note that init() does not use critical sections in the initial-
ization of the event pool. Using critical sections is unnecessary because event pools
are only initialized with QF::poolInit(), which guarantees that the pool cannot be
used before its initialization completes (Listing 8.2 in Chapter 8).

The QEPool::get() method (Listing 9.5, lines 16–31) efficiently retrieves a free
block from the pool and returns it to the caller. This method is reentrant (note the
use of the critical section), and you can call it from the context of an ISR. If the pool
has free blocks (line 19), QEPool::get() quickly unlinks a free block from the free
list (lines 20, 21). Subsequently, the routine decrements the free-block counter,
checks the counter’s value against the current low-water mark, and updates the
water mark if necessary (lines 22, 23). Finally, get() leaves the critical section and
returns the event to the caller (lines 29–30). Otherwise, if no free events exist, the
method sets the event pointer to 0 (line 27) and returns 0 to the caller.

The QEPool::put() method (Listing 9.5, lines 33–40) does the reverse of get().
Just after entering the critical section, the method asserts in the precondition that the
pool is not already full (line 35). Subsequently, the method links the returned event
to the free list (lines 36, 37) and increments the free-block counter (line 38).

From the data structures and algorithms used in the event pool implementation, it
should be clear that writing to an event instance past its declared size has potentially
disastrous consequences. Such an overrun can corrupt event parameters or destroy
the links of the free list (Figure 9.2). Either way, your application will probably
crash.

 37 myFree = e; // set as new head of the free-list
 38 ++myNfree; // one more free block in this pool
 39 QF_UNPROTECT();
 40 }

Common Elements 277
The way the QF manages event pools mitigates many of the risks associated with
using them directly. For example, the QF returns events to the same pool from which
they were allocated. Also, allocating events through the Q_NEW() macro (Section
8.4.1 in Chapter 8) is safer than direct invocation of QEPool::get() (actually, QF::
create()) because the macro uses event types consistently to allocate an event of
sufficient event size from the pool and to type cast (downcast) the returned event
pointer. As long as you don’t change the type of this pointer (e.g., by explicitly cast-
ing it to something else), you should not overrun memory.

9.3.3 Event Queue

Many RTOSs natively support event queues (actually, message queues).14 However,
in case no such support exists or the available implementation is inefficient or inade-
quate, you might want to supply your own event queue. This section describes an
event queue implementation specifically designed and optimized for active objects
(Section 8.5.2 in Chapter 8 describes the specifics of event queues in the QF). This
implementation omits several commonly supported features of message queues, such
as variable-size messages (event queues store only pointers), blocking on a full queue
(event queues cannot block on insertion), and timed blocking on empty queues
(event queues block indefinitely), to name just a few. In exchange, the implementa-
tion is small and probably faster than a full-blown message queue of an RTOS.

Listing 9.6 QEQueue event queue class declaration

14. For example, RTKernel-32 supports message queues, which I use later (Section 9.6) to demonstrate an RTOS-
based implementation of event queues.

 1 class QEQueue { // event queue-facility ...
 2 private:
 3 int init(QEvent *qSto[], unsigned qLen);
 4 QEvent *get();
 5 int putFIFO(QEvent *e);
 6 int putLIFO(QEvent *e);
 7 // OS-dependent event object to block active object on empty queue
 8 QF_OS_EVENT(myOsEvent) //platform-dependent primitive for blocking
 9 QEvent *myFrontEvt; // pointer to event at the front of the queue
 10 QEvent **myStart; // pointer to start of ring buffer
 11 QEvent **myEnd; // pointer to end of ring buffer
 12 QEvent **myHead; // pointer to where next event will be inserted
 13 QEvent **myTail; // pointer to where next event will be extracted
 14 unsigned short myNtot; // total # of entries in the buffer
 15 unsigned short myNused; // current # of events in the buffer

278 Chapter 9: Implementations of the Quantum Framework
The declaration of the QEQueue class (Listing 9.6) provides four methods.15

1. init() initializes the event queue.
2. get() extracts events from the queue.
3. putFIFO() inserts events into the queue for FIFO processing.
4. putLIFO() inserts urgent events into the queue for LIFO processing.

All these methods are declared private with friendship granted only to the QF and
QActive classes (lines 17, 18).

Figure 9.3 Event queue data structure

Figure 9.3 shows the roles and relationships among the QEQueue class attributes.
All outgoing events must pass through the myFrontEvt data member, which opti-
mizes queue operation by frequently bypassing buffering; in addition, it serves as a
queue status indicator (more about that later in this section). The pointers myStart,
myEnd, myHead, and myTail manage a ring buffer that the clients must preallocate
as a contiguous array of pointers of type QEvent*. Events are always extracted from
the buffer at the tail of the queue, the location to which myTail points in the ring
buffer. New events are typically inserted at the head of the queue, the location to
which myHead points in the ring buffer. Inserting events at the head and extracting
from the tail corresponds to FIFO operations (the putFIFO() method). QEQueue
also allows you to insert new events at the tail, which corresponds to LIFO opera-
tions (the putLIFO() method). Either way, the tail pointer always increments when

 16 unsigned short myNmax; // maximum # of events ever in the buffer
 17 friend class QF;
 18 friend class QActive;
 19 };

15. See the discussion following the Reminder state pattern in Section 5.2 in Chapter 5.

myEnd

myStart

myHead

myTail

:QEQueue

myFrontEvt

myNtot

myNused

user-allocated
ring buffer of
pointers to
events

Common Elements 279
the event is extracted, as does the head pointer when an event is inserted. Using the
pair of pointers myStart and myEnd confines the range of the head and tail pointers
to the ring buffer. When either the myHead or myTail pointer equals myEnd, which
points to one location past the preallocated buffer, then the pointers (myHead or
myTail) are wrapped around to the myStart location. The effect is a clockwise
crawling of the pointers around the buffer, as indicated by the arrow in Figure 9.3.

Other data attributes of the QEQueue class include the total number of events in
the ring buffer (myNtot), the current number of events in the buffer (myNused), and
the maximum number of events ever placed in the buffer (myNmax). This last
attribute (the high-water mark) tracks the worst-case queue utilization, which pro-
vides a valuable data point for fine-tuning your application.16

Listing 9.7 Initializing the event queue with QEQueue::init()

Listing 9.7 shows the event queue initialization through the init() method,
which takes the preallocated storage for the ring buffer (an array of event pointers,
qSto[]) and the length of the buffer qLen, which is the number of preallocated
QEvent* pointers. In line 2, the method invokes a macro to perform platform-depen-
dent initialization of the operating system primitive used to block the calling thread
when the queue is empty. (Sections 9.4–9.6 discuss specific definitions of this macro
for concrete platforms.) In lines 5 through 12, the method sets the QEQueue
attributes to emulate an empty event queue. As in the case of the event pool,
QEQueue::init() is not protected with a critical section because the QF initializa-
tion timeline precludes accessing an event queue before the initialization is complete.

16. You can inspect the myNmax data member in the debugger or through a memory dump.

 1 int QEQueue::init(QEvent *qSto[], unsigned qLen) {
 2 if (!QF_EQUEUE_INIT(this)) { // platform-dependent initialization
 3 return 0;
 4 }
 5 myStart = &qSto[0];
 6 myEnd = &qSto[qLen]; // qLen is in units sizeof(Evt *)
 7 myHead = &qSto[0];
 8 myTail = &qSto[0];
 9 myNtot = qLen;
 10 myNused = 0;
 11 myNmax = 0;
 12 myFrontEvt = 0; // clear front event
 13 return !0;
 14 }

280 Chapter 9: Implementations of the Quantum Framework
Listing 9.8 Extracting events from the event queue with QEQueue::get()

Listing 9.8 shows how the QEQueue::get() method extracts events from the
queue. This method is called only from the thread routine of the active object that
owns this queue. If the owner thread calls get() and the queue is empty (the
myFrontEvt attribute is not set, line 4), the method blocks at line 5 and waits
indefinitely for the framework to insert an event into the queue. Blocking is a
platform-dependent operation, and the routine handles it through a platform-
dependent macro. This macro is designed to be invoked from a critical section
and to restore the critical section on its return.17 At line 7, the queue cannot be
empty anymore — it either was not empty to begin with or it just received an
event after blocking.18 The event at the front of the queue is copied for delivery to
the caller (line 7). If the ring buffer contains events (line 8), an event is extracted
from the tail and moved into the front event (line 10). Otherwise, the front event
is cleared, which indicates that the queue is empty (line 16). For nominal (multi-
threading) operation, you can ignore the macro in line 17 because it is used only
in the case of foreground/background processing, which I cover in Section 9.4. Note

 1 QEvent *QEQueue::get() {
 2 register QEvent *e; // event to return to the caller
 3 QF_PROTECT();
 4 if (myFrontEvt == 0) { // is the queue empty?
 5 QF_EQUEUE_WAIT(this); // wait for event to arrive directly
 6 } // NOTE: QF_EQUEUE_WAIT() leaves the critical section
 7 e = myFrontEvt;
 8 if (myNused) { // buffer not empty?
 9 --myNused; // one less event in the ring-buffer
 10 myFrontEvt = *myTail; // remove event from the tail
 11 if (++myTail == myEnd) {
 12 myTail = myStart;
 13 }
 14 }
 15 else {
 16 myFrontEvt = 0; // queue empty
 17 QF_EQUEUE_ONEMPTY(this); // used only in foreground/background
 18 }
 19 QF_UNPROTECT();
 20 ENSURE(e);
 21 return e;
 22 }

17. For example, Listing 9.3 (lines 21–26) shows a Win-32-specific definition of QF_EQUEUE_WAIT().
18. This is true because only one thread can extract events from the queue.

Common Elements 281
that QEQueue::get() always returns a valid event pointer to the caller, as asserted
in the postcondition in line 20.

Listing 9.9 Inserting events into the event queue with QEQueue::putFIFO()

Two possible variations exist for inserting events into a queue: FIFO (the
putFIFO() method) and LIFO (the putLIFO() method). Listing 9.9 shows the
implementation of the putFIFO() method. The routine first checks whether the
queue is empty (line 4), which is equivalent to inspecting the front event
(myFrontEvt). If so, the front event is set directly and the queue is unblocked (line
6). Unblocking a thread is a platform-dependent operation, and putFIFO() handles
it through a platform-dependent macro. This macro is designed to be invoked from a
critical section and is supposed to leave the critical section on return.19 If, on the
other hand, the queue is not empty, the routine attempts to insert the event into the
ring buffer. First, it needs to check whether the buffer can accept one more event (line
9); if so, it inserts the new event at the head (lines 10–16). If the ring buffer is full, the
method simply returns failure status (0) to the caller (line 21); otherwise, the method

 1 int QEQueue::putFIFO(QEvent *e) {
 2 REQUIRE(e);
 3 QF_PROTECT();
 4 if (myFrontEvt == 0) { // is the queue empty?
 5 myFrontEvt = e; // deliver event directly
 6 QF_EQUEUE_SIGNAL(this); // unblock thread waiting on this queue
 7 } //NOTE: QF_EQUEUE_SIGNAL() must be entered in a critical section
 8 else { // queue is not empty, leave event in the ring-buffer
 9 if (myNused < myNtot) { // can the buffer accept the element?
 10 if (++myNused > myNmax) { // update # of events
 11 myNmax = myNused; // store maximum used so far
 12 }
 13 *myHead = e; // insert event into the buffer (FIFO)
 14 if (++myHead == myEnd) {
 15 myHead = myStart; // wrap the head
 16 }
 17 QF_UNPROTECT();
 18 }
 19 else { // ring-buffer overflow
 20 QF_UNPROTECT();
 21 return 0; // return failure
 22 }
 23 }
 24 return !0; // return success
 25 }

19. For example, Listing 9.3 (lines 27–29) shows a Win32-specific definition of QF_EQUEUE_SIGNAL().

282 Chapter 9: Implementations of the Quantum Framework
returns success (line 24). Note that there is no need to leave the critical section before
the last return because the QF_EQUEUE_SIGNAL() macro has done it already.

Listing 9.10 Inserting events into the event queue with QEQueue::putLIFO()

Listing 9.10 shows the implementation of the putLIFO() method that accesses
the queue in the LIFO manner. This method is identical to putFIFO(), except that
the event is inserted at the tail rather than the head. Unlike myHead, however,
myTail is a full pointer (it points to an occupied location) and must be decremented
and wrapped around before inserting the event (lines 13–17).

Having seen implementations of both the get(), putFIFO(), and putLIFO()
methods, you can appreciate the role of the myFrontEvt data member. When a
queue is empty (which is most of the time), using myFrontEvt bypasses the ring
buffer altogether. In other words, passing events usually requires assigning one
pointer and unblocking one thread.

 1 int QEQueue::putLIFO(QEvent *e) {
 2 REQUIRE(e);
 3 QF_PROTECT();
 4 if (myFrontEvt == 0) { // is the queue empty?
 5 myFrontEvt = e; // deliver it directly
 6 QF_EQUEUE_SIGNAL(this); // unblock thread waiting on this queue
 7 } // NOTE: QF_EQUEUE_SIGNAL() leaves the critical section
 8 else { // queue is not empty, leave e in the ring-buffer
 9 if (myNused < myNtot) { // can the buffer accept the element?
 10 if (++myNused > myNmax) { // update # of events
 11 myNmax = myNused; // store maximum used so far
 12 }
 13 if (--myTail < myStart) {
 14 myTail = myEnd - 1; // wrap the tail
 15 }
 16 *myTail = myFrontEvt; // push front e back into the buffer
 17 myFrontEvt = e; // put event to front
 18 QF_UNPROTECT();
 19 }
 20 else { // ring-buffer overflow
 21 QF_UNPROTECT();
 22 return 0; // return failure
 23 }
 24 }
 25 return !0; // return success
 26 }

DOS: The QF without a Multitasking Kernel 283
9.4 DOS: The QF without a Multitasking Kernel
Multitasking is crucial for fast task-level response and for decoupling different activ-
ities in the time domain. Multitasking, however, is essentially an independent con-
cept to the active object–based computing model. In other words, active object–
based frameworks can work with a variety of concurrency mechanisms, including
mechanisms that share a single thread of execution. In this section, I show how you
can adapt and use the QF in a single-threaded environment (such as Microsoft DOS)
without an underlying multitasking kernel. More importantly, you learn the kinds of
benefits the QF has to offer in this situation.

9.4.1 Foreground/Background Processing

Not all embedded systems need or can afford a multitasking kernel. Simpler, high-
volume embedded applications, such as home appliances, electronic toys, vending
machines, thermostats, and countless other applications, are typically organized as
foreground/background systems (e.g. [Labrosse 92, 99]). As the name suggests, the
software consists of two main parts: the foreground, which comprises the ISRs that
handle asynchronous events in a timely fashion, and the background, which is an
infinite loop that uses all remaining CPU cycles to perform less time-critical actions.
Listing 9.11 shows a typical background loop.

Listing 9.11 Typical background loop

The timing diagram in Figure 9.4 shows a typical execution profile of a fore-
ground/background system. In the absence of interrupts, the background loop (List-
ing 9.11) executes action A, then B, then C, then loops back to A, and so on. Not all
actions in the loop need to execute every time — some might be conditional (such as
action B). When an interrupt occurs (Figure 9.4, time 8), the background loop sus-
pends, and the CPU switches context to the foreground (ISR). The foreground typi-
cally communicates with the background code through shared memory. The
background is responsible for protecting this memory from potential corruption (by
disabling interrupts when accessing the shared variables). When the foreground

main() {
 . . . // initialization
 for (;;) { // for-ever
 doA(); // perform action A
 if (...) {
 doB(); // conditionally perform action B
 }
 doC(); // perform action C
 } // loop back
}

284 Chapter 9: Implementations of the Quantum Framework
relinquishes control of the CPU, the background always resumes exactly at the point
it was interrupted. If the foreground makes some information available to the back-
ground, this information (however urgent) must wait for processing until the correct
background routine gets its turn to run. In the worst case, this delay can take the full
pass through the loop and is called the task-level response. Task-level response is
nondeterministic because it depends on the conditional execution within the back-
ground loop, as well as on the time the foreground preempts the background (as
indicated in Figure 9.4 with loop periods T1, T2, T3, etc.). Any change in either the
foreground or background code affects the timing.

Figure 9.4 Execution profile of a foreground/background system

9.4.2 Foreground/Background with the QF

Foreground/background architecture can be adapted to execute independent
state machines (active objects) relatively easily. Moreover, the QF naturally replaces
traditional circular processing with priority-based event handling. Listing 9.12
shows the structure of the background code modified for the QF.

Listing 9.12 Background processing with the QF

0

waiting

running
C

waiting

running

waiting

running

time5 10 15 20

B

A

ISR
active

inactive

T1 T2 T3 T4

B
 n

ot
 e

xe
cu

te
d

main() {
 QF::init(. . .); // initialize QF
 QF::poolInit(. . .); // initialize at least one event-pool
 activeA.start(. . .); // start active object A
 activeB.start(. . .); // start active object B
 activeC.start(. . .); // start active object C
 // hook clock tick ISR (platform-dependent)
 for (;;) { // for-ever

DOS: The QF without a Multitasking Kernel 285
As you can see, background processing starts with a typical initialization of the
framework (Section 8.6.1 in Chapter 8) and then enters a for-ever loop that period-
ically executes only one routine: QF::background().

Listing 9.13 QF::background() method

Listing 9.13 shows the implementation of QF::background(). The most impor-
tant variable of this routine is the package scope ready list, pkgReadyList, which is
defined as a byte in line 1. Each bit in this byte represents the state of an event queue
associated with each active object (a cleared bit indicates an empty queue). The least
significant bit 0 corresponds to the event queue of the active object with priority 1
(the lowest priority), bit 1 corresponds to the event queue of the active object with
priority 2, and so on. Finally, the most significant bit 7 corresponds to the active
object with priority 8.20

With this representation, QF::background() can easily determine in line 9
whether any events are available for processing (at least one bit must be set in the
ready list). If so, the ready list is used again to find the highest priority active object
with a nonempty event queue (line 10). This action is achieved using a simple lookup
table, log2Lkup[], that maps the value stored in a byte (the ready list) to the most

 QF::background(); // perform background processing
 // optionally perform other actions (e.g., I/O)
 }
 // optionally perform cleanup (platform-dependent)
}

 1 unsigned char pkgReadyList; // ready-list of active objects
 2
 3 void QF::background() {
 4 static unsigned char const log2Lkup[] = { // log based 2 look-up
 5 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
 6 . . .
 7 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
 8 };
 9 if (pkgReadyList) { // any events available?
 10 register QActive *a = pkgActive[log2Lkup[pkgReadyList]];
 11 register QEvent *e = (QEvent *)a->myEqueue.get();
 12 a->dispatch(e); // dispatch event to the statechart
 13 QF::propagate(e); // propagate to the next subscriber
 14 }
 15 }

20. To use more than eight active objects, you need to increase the size of pkgReadyList (e.g., to 16 bits) and to
extend the binary logarithm lookup table accordingly (this action can be expensive, so you might have to use
more creative lookup techniques).

286 Chapter 9: Implementations of the Quantum Framework
significant bit set in the byte. Figure 9.5 shows the structure of this lookup table,
which turns out to be simply the binary logarithm (log base 2). The value returned
from the lookup calculation is the priority, which in turn is used to resolve the
pointer to the active object. This pointer serves in the next line (11) to extract the
event from the queue of the active object. The event is then dispatched to the active
object (line 12) and propagated to the other subscribers (line 13). Not surprisingly,
these two lines are identical to lines 12 and 13 in the thread routine discussed in
Chapter 8 (Listing 8.8), which QF::background() replaces in the foreground/back-
ground architecture.

The pkgReadyList variable is the central element of the design. The event queue
implementation in this case must always keep the ready list consistent with the state
of the event queues. This requirement implies that pkgReadyList is shared between
the background and the foreground because ISRs can change the state of event
queues by publishing events. (In fact, event passing should be the only way in which
the foreground communicates with the background.) As already mentioned in the
previous section, the background code is responsible for protecting any shared vari-
ables from corruption. Nonetheless, the background loop from Listing 9.13 accesses
pkgReadyList in lines 9 and 10 without any protection. Generally speaking, you
could disable interrupts before accessing pkgReadyList (before line 9) and enable
them after line 10 (and for completeness, after line 14 as well). In this particular case,
however, the critical section can be optimized away, because ISRs can only add
events to event queues (by setting bits in the ready list) but can never remove events
(by clearing the bits). Therefore, even if an ISR preempts QF::background()
between lines 9 and 10 (or somewhere in the middle of line 10) and sets some addi-
tional bits in pkgReadyList, the code handles it just fine. Any bit set in the ready list
still corresponds to a nonempty event queue.

The event queue implementation, on the other hand, must protect any access to
the shared ready list pkgReadyList. Listing 9.14 shows the definition of the plat-
form-dependent macros pertaining to event queues, which appear in the platform-
independent event queue code in Section 9.3.3.

Figure 9.5 Binary logarithm lookup table maps byte value to most significant bit

0 2 4 32 64 byte

m
os

t-
si

gn
ifi

ca
nt

 b
it

1
2
3
4
5
6
7
8

8 16 128

Y = log2(x)

DOS: The QF without a Multitasking Kernel 287
Listing 9.14 Definition of platform-dependent macros for DOS

The myOsEvent data member of the event queue (Listing 9.14, line 1) is, in this
case, just a bit mask with exactly one bit set (the bit corresponding to the priority of
the queue). In background processing (Listing 9.13), the event queue can never block
because the code extracts events only from nonempty queues. Consequently, the QF_
EQUEUE_WAIT() macro should never be invoked, which line 3 of Listing 9.14 asserts.
Signaling an event queue corresponds to setting the corresponding bit in the ready
list, followed by exiting the critical section (the QF_EQUEUE_SIGNAL() macro in lines
5–7). Finally, extracting the last event from a queue must be associated with clearing
the corresponding bit in the ready list (the QF_EQUEUE_ONEMPTY() macro in line 9).
Note that every access to the pkgReadyList ready list occurs inside a critical sec-
tion.

Listing 9.15 Foreground/background-specific implementation of the QActive class

 1 #define QF_OS_EVENT(x_) unsigned char x_; // see Listing 9.6, line 8
 2 #define QF_EQUEUE_INIT(q_) (1) // see Listing 9.7, line 2
 3 #define QF_EQUEUE_WAIT(q_) ASSERT(0) // see Listing 9.8, line 5
 4 // see Listing 9.9, line 6
 5 #define QF_EQUEUE_SIGNAL(q_) \
 6 pkgReadyList |= (q_)->myOsEvent; \
 7 QF_UNPROTECT()
 8 // see Listing 9.8, line 17
 9 #define QF_EQUEUE_ONEMPTY(q_) (pkgReadyList &= ~(q_)->myOsEvent)

 1 int QActive::start(unsigned prio, QEvent *qSto[], unsigned qLen,
 2 int stkSto[], unsigned stkLen)
 3 {
 4 REQUIRE(0 < prio && prio <= QF_MAX_ACTIVE &&
 5 stkSto == 0); // f/b does not need per-actor stack
 6 myPrio = prio;
 7 QF::add(this); // make QF aware of this active object
 8 if (!myEqueue.init(qSto, qLen)) {
 9 return 0; // return failure
 10 }
 11 myEqueue.myOsEvent = 1 << (myPrio - 1); // bit-mask of this actor
 12 QHsm::init(); // execute initial transition
 13 return !0; // return success
 14 }
 15
 16 void QActive::stop() { QF::remove(this); }
 17
 18 int QActive::enqueue(QEvent *e) { return myEqueue.putFIFO(e); }
 19

288 Chapter 9: Implementations of the Quantum Framework
Listing 9.15 shows the foreground/background-specific implementation of the
QActive class. QActive::run() is not implemented in this case. It is not invoked
either, so the linker doesn’t complain. QActive::start() does not actually start
an execution thread. Instead, it just sets the active object’s priority (line 6), reg-
isters the active object by the framework (line 7), and initializes the event queue
(lines 8–11). Specifically, line 11 sets the bit mask that corresponds to the prior-
ity of the queue. The last action in QActive::start() executes the initial transi-
tion of the active object (line 12). The other platform-dependent QActive
methods are straightforward as well. QActive::stop() (line 16) simply removes
the active object from the framework (by canceling all subscriptions). QActive::
enqueue() (line 18) delegates queuing the event to the event queue object using
the FIFO policy, as in the QActive::postFIFO() method (lines 20–23). Finally,
the QActive::postLIFO() method (lines 25–28) uses the LIFO policy to queue
events.

9.4.3 DOS-Specific Code

The code presented so far is applicable to any foreground/background port of the
QF, not just to the DOS platform. Listing 9.16 shows the DOS-specific parts of the
implementation.

Listing 9.16 DOS-specific foreground/background code

 20 void QActive::postFIFO(QEvent *e) {
 21 REQUIRE(e->useNum == 0); // event must not be in use
 22 ALLEGE(myEqueue.putFIFO(e)); // the queue must not overflow
 23 }
 24
 25 void QActive::postLIFO(QEvent *e) {
 26 REQUIRE(e->useNum == 0); // event must not be in use
 27 ALLEGE(myEqueue.putLIFO(e)); // the queue must not overflow
 28 }

 1 #include "qassert.h"
 2 #include "port.h"
 3
 4 // foreground code ...
 5 enum { TICK_VECTOR = 0x08 };
 6 static void (__cdecl __interrupt __far *dosISR)(void);
 7 void __cdecl __interrupt __far ISR(void) {
 8 QF::tick();
 9 _chain_intr(dosISR);
 10 }
 11 // background code ...
 12 main() {

DOS: The QF without a Multitasking Kernel 289
Listing 9.16 (lines 5–10) pertain to the foreground code, which consists of one
ISR — the clock tick. This ISR (lines 7–10) invokes QF::tick() and chains to the
standard DOS clock interrupt.

The rest of Listing 9.16 pertains to the background process. After the standard
initialization of the framework (lines 13–15), the ISR is hooked up (lines 16–19) and
followed by the background loop. The loop invokes QF::background() in line 22
and polls for keyboard input, providing a way to break out of the loop and terminate
the application. The DOS-specific cleanup consists mostly of restoring the original
interrupt handler (lines 28–30).

Exercise 9.1 Install the evaluation version of On Time RTOS-32 on your PC from the
accompanying CD-ROM and port the QF to On Time’s RTTarget-32.
For the purpose of this discussion, you can view RTTarget-32 as a 32-bit
protected-mode DOS. The QF port to RTTarget-32 can use the same
source code as DOS, except for system initialization and when connect-
ing the clock tick interrupt. Refer to the On Time documentation
[OnTime 01] and to the code of the sample application Serint (both
provided in the On Time evaluation kit). Compare your port with the
solution on the CD-ROM.

 13 QF::poolInit(...);
 14 activeA.start(...);
 15 . . . // start other active objects...
 16 dosISR = _dos_getvect(TICK_VECTOR);
 17 _disable();
 18 _dos_setvect(TICK_VECTOR, ISR); // hook the clock tick ISR
 19 _enable();
 20
 21 for (;;) { // for-ever
 22 QF::background(); // background processing
 23 if (_kbhit()) { // any key pressed?
 24 break; // break out of the loop and shutdown
 25 }
 26 }
 27 QF::cleanup();
 28 _disable();
 29 _dos_setvect(TICK_VECTOR, dosISR);
 30 _enable();
 31 return 0;
 32 }

290 Chapter 9: Implementations of the Quantum Framework
9.4.4 Benefits of the QF in a Foreground/Background System

Employing the QF in a foreground/background system costs you a few hundred
bytes of RAM for event queues, event pool(s), and the subscriber lists, as well as a
few kilobytes of ROM for the framework code.21 What do you get in exchange?

First, you gain the power and convenience of hierarchical state machines
(described in Part I of this book) and most of the benefits associated with the active
object–based computing model (described in Chapter 7).

Second, event queues of active objects act as priority queues and radically change
the execution profile of your application. Instead of waiting a full pass through the
background loop, a high-priority active object needs to wait only for completion of
the currently executing RTC step. This feature dramatically shortens task-level
response, which for high-priority active objects is determined only by the longest
RTC step in the system rather than the longest pass through the whole loop. In fact,
such an execution profile is much more similar to the profile of a cooperative multi-
tasking kernel22 than to a simple background loop. To reduce task-level response
even more, you can use the Reminder state pattern (Chapter 5) to break longer steps
up into smaller chunks of processing (at the end of each chunk, you post a reminder
to self to trigger the continuation of processing next time around).

Perhaps the most important benefit of the QF, however, is to provide a reliable,
hassle-free way to communicate between the interrupt level (foreground) and the
task level (background), because ISRs can publish events. This feature significantly
reduces the need for ad hoc communication mechanisms via shared memory. You
still need to devise mechanisms for the less frequent communication from the task
level to the interrupt level (ISRs cannot receive events), but the overall risk of race
conditions is significantly reduced.

The small memory footprint required by the QF running in the foreground/back-
ground environment makes the QF suitable even for applications severely con-
strained by resources (including eight-bit micros). Generally, if you can program
your system in C (rather than in the native assembly language only), then you proba-
bly can use the QF as well.23

9.5 Win32: The QF on the Desktop
Although you can use desktop operating systems such as Microsoft Windows for
certain classes of embedded applications, you cannot expect fully deterministic

21. Code and data in qf_dos.lib for DOS (large memory model, release version) take 5.5KB.
22. A cooperative multitasking kernel requires RAM for task control blocks and separate per-task stacks, as well as

ROM for the kernel code.
23. For smaller systems, you might be more interested in the C version of the QF, which is available on the accom-

panying CD-ROM.

Win32: The QF on the Desktop 291
real-time performance. More importantly, programming general-purpose com-
puters as embedded systems is challenging because it requires reconciling dia-
metrically opposed paradigms. Things that are trivial when you program at the
bare-metal level (e.g., disabling interrupts or writing to I/O ports) are often
problematic at the level of the desktop operating system. General-purpose com-
puter environments try to insulate applications from the hardware and severely
limit the programmer to a specific API (the Win32 API in the case of Microsoft
Windows).

Desktop systems, however, are interesting to embedded systems developers not
just as potential embedded targets. Desktop systems often make excellent plat-
forms to develop, test, and debug embedded code. This option is especially valu-
able if you can run the exact code both on the desktop and inside your embedded
target. As it turns out, the QF efficiently isolates the application from platform
differences. Additionally, loose coupling among application components (active
objects) makes it feasible to develop and test active objects in small groups — or,
better yet, one at a time on your desktop workstation — and then to recompile the
same application code for your embedded target. This approach is often more
productive than direct development on the target because the PC lets you work
with familiar, powerful, and inexpensive tools and offers excellent visibility into
the code, even before the target hardware becomes available. An embedded tar-
get, on the other hand, frequently has severe resource constraints and mandates
use of expensive, unfamiliar tools operating through a sluggish connection. All of
these issues result in slower turnaround of the edit–compile–execute develop-
ment cycle on the embedded hardware.

The intention of the QF port to the Win32 API is mostly to provide cross-plat-
form embedded development and testing. In particular, this implementation
does not attempt to improve the real-time performance of Microsoft Windows24 —
it just sticks to the plain Win32 API.

9.5.1 Critical Section, Event Queue, and Execution Thread

A QF application under Win32 is a single process, with each active object run-
ning in a separate Win32 thread. The framework does not use interrupts and
handles everything at the task level (including the QF::tick() clock tick). Con-
sequently, the Win32 critical-section object (CRITICAL_SECTION) is a good
mechanism for mutual exclusion.

24. Several techniques for improving real-time performance of Microsoft Windows exist (e.g., see [Epplin 98]).

292 Chapter 9: Implementations of the Quantum Framework
Note: Using the Win32 CRITICAL_SECTION object can lead to priority inversion
on Win32 platforms; NT and 9x have different methods of handling it.
Interestingly, 9x appears to handle it the proper way by boosting the
lower priority thread with the lock to the same priority as the thread that
is waiting for the lock. NT randomly boosts priorities of lower priority
threads until the lock is released. See Microsoft Knowledge Base article
Q96418 for more details [MicrosoftKB 01].

In Section 9.2, you saw the package scope header file for the Win32 port (Listing
9.2). The QF_PROTECT() macro resolves to the EnterCriticalSection() Win32
API call, and QF_UNPROTECT() resolves to the matching call LeaveCritical-
Section() (Listing 9.3, lines 9, 10). Because QF::tick() runs in the task context,
it also needs to be protected; therefore, the QF_ISR_PROTECT() and QF_ISR_
UNPROTECT() macros also resolve to the same Win32 calls. All these macros use
only one package scope, critical-section object: pkgWin32CritSect.

The QF port to Win32 demonstrates how to use the event pool and event queue
classes (Sections 9.3.1 and 9.3.2) in a multithreaded environment. Porting the event
pool class is trivial because the only platform-dependent element is the critical sec-
tion, which has already been handled. The event queue class, on the other hand, is
more problematic because it needs to block the corresponding active object when the
queue is empty. To do so, the event queue uses the Win32 event object (not to be con-
fused with the event instances exchanged among active objects). To block the calling
thread, the event queue uses the WaitForSingleObject() Win32 call (see the fol-
lowing code snippet of the QF_EQUEUE_WAIT() macro taken from Listing 9.3, lines
21–26). Conversely, to unblock the thread, the QF_EQUEUE_SIGNAL() macro resolves
to SetEvent() (Listing 9.3).

You might wonder why QF_EQUEUE_WAIT() calls WaitForSingleObject() in
a loop rather than calling it only once. The reason is that QEQueue::putFIFO()
can sometimes signal the event queue more than once between successive invoca-
tions of QEQueue::get(). Consider the following scenario. Active object A calls
QEQueue::get() to retrieve an event from its queue that holds one event. The
queue is now empty, which is indicated by the clearing of its front event,

#define QF_EQUEUE_WAIT(q_) \
 QF_UNPROTECT(); \
 do { \
 WaitForSingleObject((q_)->myOsEvent, INFINITE); \
 } while ((q_)->myFrontEvt == 0); \
 QF_PROTECT()

Win32: The QF on the Desktop 293
myFrontEvt (Listing 9.8, line 16). After retrieving the event, active object A starts
processing. However, active object B preempts A and publishes a new event for
active object A. QEQueue::putFIFO() signals active object A’s queue (it invokes
SetEvent() via the QF_EQUEUE_SIGNAL() macro) because the queue is empty (List-
ing 9.9 line 6). When active object A comes to retrieve the next event, the queue is
not empty (myFrontEvt isn’t cleared), so the queue does not attempt to block. This
time, nobody inserts events to the empty queue of active object A. When active
object A calls QEQueue::get() again, it attempts to block because myFrontEvt is
cleared. However, the state of the Win32 event is signaled, and WaitForSingle-
Object() returns immediately without blocking. The do–while loop in the QF_
EQUEUE_WAIT() macro saves the day by enforcing the second call to WaitFor-
SingleObject() — this time truly blocking the active object A until myFrontEvt is
set. Note also that the QF_EQUEUE_WAIT() macro tests the myFrontEvent attribute
outside of a critical section, which is safe in this case because only one thread (the
owner of the queue) can extract events from the queue.

Listing 9.17 Win32 critical section and execution thread integrated into the QF

 1 CRITICAL_SECTION pkgWin32CritSect; // define critical-section object
 2
 3 void QF::osInit() { InitializeCriticalSection(&pkgWin32CritSect); }
 4 void QF::osCleanup() { DeleteCriticalSection(&pkgWin32CritSect); }
 5
 6 static DWORD WINAPI run(LPVOID a) { // Win32 thread routine
 7 ((QActive *)a)->run();
 8 return 0;
 9 }
 10
 11 int QActive::start(unsigned prio, QEvent *qSto[], unsigned qLen,
 12 int stkSto[], unsigned stkLen)
 13 {
 14 REQUIRE(stkSto == 0); // Windows allocates stack internally
 15 if (!myEqueue.init(qSto, qLen)) {
 16 return 0; // return failure
 17 }
 18 myPrio = prio;
 19 QF::add(this); // make QF aware of this active object
 20 switch (myPrio) { // assign Win32 thread priority to "prio"
 21 case 1: prio = THREAD_PRIORITY_LOWEST; break;
 22 case 2: prio = THREAD_PRIORITY_IDLE; break;
 23 case 3: prio = THREAD_PRIORITY_BELOW_NORMAL; break;
 24 case 4: prio = THREAD_PRIORITY_NORMAL; break;
 25 case 5: prio = THREAD_PRIORITY_ABOVE_NORMAL; break;
 26 case 6: prio = THREAD_PRIORITY_HIGHEST; break;

294 Chapter 9: Implementations of the Quantum Framework
Listing 9.17 shows how the QF integrates the Win32 critical section and the
Win32 execution thread. Lines 1 through 4 pertain to the critical-section object that
needs to be defined, initialized, and cleaned up. In line 6, you see the signature of a
thread routine required by the Win32 API. Lines 11 through 41 define QActive::
start(). This method provides an example of remapping the active object priority
to the thread priority that the underlying operating system supports. Note that active
objects must still have unique priorities, regardless of how many different thread pri-
ority levels are actually available in the operating system.

9.5.2 Clock Tick

An ideal place for calling QF::tick() is the clock tick ISR. A clock tick inter-
rupt seems to be universal for both embedded and general-purpose computer sys-
tems. Desktop environments, however, are very protective of the interrupts and
typically offer only task-level mechanisms for time management. One of the sim-
plest such mechanisms is dedicating an execution thread that invokes the QF
clock tick service periodically. The main application thread (the one that runs
main()) is convenient for this purpose.

Listing 9.18 Structure of main() in the Win32 QF application

 27 default: prio = THREAD_PRIORITY_TIME_CRITICAL; break;
 28 }
 29 DWORD threadId;
 30 myThread = CreateThread(NULL, // Win32 API call
 31 stkLen, // initial size of the stack
 32 ::run, // thread routine
 33 this, // thread routine argument
 34 0,
 35 &threadId);
 36 if (!myThread) {
 37 return 0; // return failure
 38 }
 39 SetThreadPriority(myThread, prio); // Win32 API call
 40 return !0; // return success
 41 }

#include "qf_win32.h"

main() {
 QF::init(. . .);
 QF::poolInit(. . .);
 activeA.start(. . .);
 . . .
 for (;;) { // for-ever

RTKernel-32: The QF with a Preemptive Priority-Based Kernel 295
Note: The example in Listing 9.18 assumes a Win32 console application. If you
want to use the QF in Microsoft Windows GUI applications, you should
arrange for a WM_TIMER message to trigger the invocation of QF::tick()
from WinMain(). Often, you can use state machines in Microsoft Windows
GUIs without the QF (see the Quantum Calculator example in Chapter 1).

Listing 9.18 shows the structure of main() in a QF application under Microsoft
Windows. After typically initializing the framework and starting the active objects,
main() enters a for-ever loop, which periodically invokes QF::tick(). The tick
period is determined by how long the main task delays subsequent QF:tick() invo-
cations (here coded as the Sleep()25 Win32 call). Note that the clock tick interval
in this implementation is subject to additional jitter caused by nondeterministic
scheduling of the main thread. This jitter is on top of the usual delay in delivery of
the timeout event (see Section 8.7 in Chapter 8).

9.6 RTKernel-32: The QF with a Preemptive

Priority-Based Kernel
In this section, I describe the QF port to the environment for which it is primarily
designed — a preemptive, priority-based, real-time multitasking kernel.

Such a kernel always executes the highest priority thread that is ready to run.
On completion of interrupt handling, the kernel resumes execution of the highest
priority thread that is ready to run, which is not necessarily the interrupted
thread (an ISR can unblock a higher priority thread by sending it an event).
When a thread, rather than an ISR, makes a higher priority thread ready to run
(by publishing an event for it), the higher priority thread immediately gets con-
trol of the CPU, thus preempting the current thread. The result is a deterministic exe-
cution of higher priority threads and an optimal task-level response.

 Sleep(55); // delay for 55ms
 QF::tick(); // tick
 }
 QF::cleanup();
 return 0;
}

25. Sleep() has a resolution of only 18.2Hz (55ms) on Win 9x platforms. The granularity of the system timer in
the NT family is much finer (10ms).

296 Chapter 9: Implementations of the Quantum Framework
To demonstrate this QF port practically, I have chosen RTKernel-32, which is a
real-time kernel for x86 processors.26 I have selected this product because
• it is a true real-time kernel, whose features are characteristic of the commercial

RTOS that I want to demonstrate;
• it is designed specifically for x86 processors running in 32-bit protected mode, so

you are able to execute the code on virtually any PC or PC-compatible hardware;
• it allows building the code with the same compiler and linker you’ve been using

so far;27

• it provides easy-to-use facilities for cross-developing embedded code — in partic-
ular, you are able to cross-debug embedded x86 targets directly from a Microsoft
Windows host using the Microsoft Developer Studio IDE;

• it offers a fully functional evaluation version, which the company (On Time Soft-
ware) allowed me to include on the accompanying CD-ROM;

• it comes with comprehensive, detailed documentation, also included on the CD-
ROM (this documentation is cited as [OnTime 01]);

• it is, overall, an excellent, royalty-free product with good technical support.28

9.6.1 Critical Section and Event Pool

Unlike desktop operating systems (such as Microsoft Windows or desktop Linux),
an RTOS leaves you the freedom to disable and enable interrupts directly. RTK-
ernel-32 is a good example on which to demonstrate the three main techniques
commonly applied in embedded systems (see also [OnTime 01, Interrupt Han-
dling]). The first, perhaps most straightforward and portable technique is to use
functions that you can call from C. For example, RTKernel-32 provides a pair of
functions: RTKDisableInterrupts() and RTKEnableInterrupts() (see Listing
9.19, lines 8, 9). When you step into these functions with a debugger,29 you find that
RTKDisableInterrupts() resolves to the CLI x86 instruction, and RTKEnable-
Interrupts() resolves to the STI instruction (Section 9.3.1). This peek under the
hood suggests a second solution, which is to code these machine instructions directly
by means of in-line assembly, as in lines 10 and 11 of Listing 9.19, which have been
commented out. Finally, some hardware platforms allow interrupts to be masked
before they reach the CPU. For example, PC-compatible hardware allows you to

26. RTKernel-32 is a product of On Time Software. The accompanying CD-ROM contains a fully functional eval-
uation version of RTKernel-32 and other On Time products, as well documentation and vendor information
(see also http://www.on-time.com).

27. Among other development environments, you can use RTKernel-32 in conjunction with Microsoft Visual C++.
28. I am not associated with On Time Software in any way. I just have used their product and like it.
29. Chapter 10 presents a simple QF application and explains how to cross-debug it with RTKernel-32.

RTKernel-32: The QF with a Preemptive Priority-Based Kernel 297
mask interrupts at the level of the programmable interrupt controller, which consists
of two cascaded Intel 8089A-compatible chips. You can mask and unmask individ-
ual IRQ lines with the RTKernel-32 functions RTKDisableIRQ() and RTKEn-
ableIRQ(), respectively.30

Listing 9.19 Package scope port.h include file for the RTKernel-32 port

30. The QF does not use this method to implement a critical section, but the technique is helpful — for example, to
mask interrupts while installing an interrupt handler for a particular IRQ.

 1 #ifndef port_h
 2 #define port_h
 3
 4 #include "qf_rtk32.h"
 5 #include "qfpkg.h"
 6
 7 // RTK32-specific critical section operations
 8 #define QF_PROTECT() RTKDisableInterrupts()
 9 #define QF_UNPROTECT() RTKEnableInterrupts()
 10 //#define QF_PROTECT() __asm{cli}
 11 //#define QF_UNPROTECT() __asm{sti}
 12 #define QF_ISR_PROTECT()
 13 #define QF_ISR_UNPROTECT()
 14
 15 // RTK32-compiler-specific cast
 16 #define Q_STATE_CAST(x_) reinterpret_cast<QState>(x_)
 17
 18 // RTK32-specific event pool
 19 class QEPool { // "Quantum" Event Pool
 20 friend class QF;
 21 RTKMemPool myRTKPool; // RTK memory pool
 22 unsigned short myEvtSize; // maximum event size (in bytes)
 23 };
 24
 25 // RTK32-specific event pool operations
 26 #define QF_EPOOL QEPool
 27 #define QF_EPOOL_INIT(p_, poolSto_, nEvts_, evtSize_) \
 28 if (1) { \
 29 ASSERT(poolSto_ == 0); \
 30 (p_)->myEvtSize = evtSize_; \
 31 RTKAllocMemPool(&(p_)->myRTKPool, evtSize_, nEvts_); \
 32 } else
 33 #define QF_EPOOL_GET(p_, e_) \
 34 ((e_) = (QEvent *)RTKGetBuffer(&(p_)->myRTKPool))
 35 #define QF_EPOOL_PUT(p_, e_) \
 36 RTKFreeBuffer(&(p_)->myRTKPool, e_);

298 Chapter 9: Implementations of the Quantum Framework
Commercial RTOSs frequently support real-time memory management in the
form of fixed block–size heaps. RTKernel-32 calls them memory pools (see
[OnTime 01, Real-Time Memory Management]). The RTKernel-32 memory
pools offer almost the entire functionality required by the QF event pools, except
for a method to check the block size of the pool. Therefore, the package scope
header file (Listing 9.19) wraps the QEPool class around the RTKernel-32 memory
pool RTKMemPool (lines 19–23). The QEPool class supplies the missing piece of
information in the myEvtSize attribute. Lines 26 through 36 define the platform-
dependent event pool operations: initializing a pool, obtaining an event, and releas-
ing an event. All these operations rely on the RTKernel-32 services RTKAllocMem-
Pool(), RTKGetBuffer(), and RTKFreeBuffer(), respectively.

Listing 9.20 Public qf_rtk32.h include file for the RTKernel-32 port

9.6.2 Event Queue and Execution Thread

Almost universally, commercial RTOSs support message queues. In RTKernel-32,
they are called mailboxes (see [OnTime 01, Mailboxes]). RTKernel-32 mailboxes, as
with typical message queues in a commercial RTOS, hold messages of variable size
and support indefinite-blocking, timed-blocking, and nonblocking access for both

 37
 38 // the following constant may be bumped up to 15 (inclusive)
 39 // before redesign of algorithms is necessary
 40 enum { QF_MAX_ACTIVE = 15 };
 41
 42 #endif // port_h

 1 #ifndef qf_rtk32_h
 2 #define qf_rtk32_h
 3
 4 #include <rtk32.h>
 5
 6 // RTK-32-specific event queue and thread types
 7 #define QF_EQUEUE(x_) RTKMailbox x_;
 8 #define QF_THREAD(x_) RTKTaskHandle x_;
 9 #define Q_STATIC_CAST(type_, expr_) static_cast<type_>(expr_)
 10
 11 #include "qevent.h"
 12 #include "qhsm.h"
 13 #include "qactive.h"
 14 #include "qtimer.h"
 15 #include "qf.h"
 16
 17 #endif // qf_rtk32_h

RTKernel-32: The QF with a Preemptive Priority-Based Kernel 299
storing and retrieving events. Moreover, unlimited numbers of RTKernel-32 threads
can retrieve messages from a single mailbox. As described in Chapter 8, the QF uses
only a subset of this functionality.

The public qf_rtk32.h include file (Listing 9.20) shows how mailboxes and
RTKernel-32 execution threads integrate into the QF. Lines 7 and 8 define the event
queue as RTKMailbox and the execution thread as RTKTaskHandle.

Listing 9.21 RTKernel-32 mailbox and execution thread integrated into the QF;

identifiers in boldface indicate RTK-32 function calls

 1 static void RTKAPI run(void *a) {
 2 ((QActive *)a)->run();
 3 }
 4
 5 void QActive::run() {
 6 QHsm::init(); // execute initial transition
 7 for (;;) {
 8 QEvent *e;
 9 RTKGet(myEqueue, &e);
 10 dispatch(e); // dispatch the event to the statechart
 11 QF::propagate(e); // propagate to the next subscriber
 12 }
 13 }
 14
 15 int QActive::start(unsigned prio, QEvent *qSto[], unsigned qLen,
 16 int stkSto[], unsigned stkLen)
 17 {
 18 myPrio = prio;
 19 QF::add(this); // make QF aware of this active object
 20 ASSERT(prio < RTK_MAX_PRIO &&
 21 qSto == 0 && stkSto == 0); // RTK-32 allocates these
 22 myEqueue = RTKCreateMailbox(sizeof(QEvent *), qLen, "");
 23 if (!myEqueue) {
 24 return 0; // failed to create RTK-32 mailbox -- return error
 25 }
 26 if ((myThread = RTKCreateThread(::run, // thread routine
 27 prio, // thread priority
 28 stkLen*sizeof(int), // stack size (bytes)
 29 TF_MATH_CONTEXT, // thread flags
 30 this, // thread routine argument
 31 "")) == 0) // thread’s name
 32 {
 33 return 0; // failed to create RTK-32 thread -- return error
 34 }
 35 return !0; // return success
 36 }

300 Chapter 9: Implementations of the Quantum Framework
Listing 9.21 shows the platform-dependent implementation details. In line 22,
QActive::start() creates an RTKernel-32 mailbox capable of holding qLen
pointer-sized messages. The active object’s thread routine, QActive::run() (lines
5–13), retrieves event pointers from the mailbox by means of the indefinitely block-
ing call to RTKGet(). QActive::enqueue() (lines 43–45), QActive::postFIFO()
(lines 47–50), and QActive::postLIFO() (lines 52–55) are implemented with con-
ditional (nonblocking) calls to either RTKPutCond() or RTKPutFrontCond(). As
always in the QF, these calls are associated with the guarantee of event delivery con-
tracts (Section 8.5.2 in Chapter 8).

In lines 26 through 32 of Listing 9.21, QActive::start() creates an RTKer-
nel-32 thread. No remapping of priorities is necessary in this case because RTKer-
nel-32 uses the same priority numbering as the QF. Finally, QActive::stop() (lines
38–41) terminates the thread by means of the RTKTerminateTask() call.

9.6.3 RTKernel-32 Initialization and Clock Tick

Listing 9.22 shows a typical RTOS initialization sequence. The main() routine starts
with the RTKernelInit() call (line 12), which is followed by the setup of the cus-
tom clock tick handler (lines 15–18). The high-level timer interrupt handler (IRQ 0
on the PC) is customized to invoke QF::tick() (line 7) and then chains to the
default RTKernel-32 clock tick interrupt.

After initializing the multitasking kernel, main() initializes the QF as usual
and then blocks (in line 28) because a return from main() terminates the whole
application in RTKernel-32.

 37
 38 void QActive::stop() {
 39 QF::remove(this);
 40 RTKTerminateTask(&myThread);
 41 }
 42
 43 int QActive::enqueue(QEvent *e) {
 44 return RTKPutCond(myEqueue, &e);
 45 }
 46
 47 void QActive::postFIFO(QEvent *e) {
 48 REQUIRE(e->useNum == 0); // event must not be in use
 49 ALLEGE(RTKPutCond(myEqueue, &e));
 50 }
 51
 52 void QActive::postLIFO(QEvent *e) {
 53 REQUIRE(e->useNum == 0); // event must not be in use
 54 ALLEGE(RTKPutFrontCond(myEqueue, &e));
 55 }

RTKernel-32: The QF with a Preemptive Priority-Based Kernel 301
Listing 9.22 RTKernel-32 initialization and setup of the clock tick ISR

Exercise 9.2 Prepare another port of the QF to RTKernel-32 using the QEQueue class
instead of the RTKernel-32 mailbox. Apply the RTKernel-32 binary
semaphore to block the calling thread when the queue is empty. Com-
pare your port with the solution on the CD-ROM.

9.6.4 Cross-Development with RTKernel-32

With RTKernel-32, you compile and link the code on one machine (called the host)
but execute the code on a different machine (called the target). Embedded applica-
tions typically use this method of software development, called cross-development.

 1 #include "qf_rtk32.h"
 2
 3 enum { TIMER_IRQ = 0, TICKS_PER_SEC = 100};
 4
 5 static RTKIRQDescriptor rtk32ISR;
 6 static void RTKAPI ISR(void) { //high-level Interrupt Service Routine
 7 QF::tick();
 8 RTKCallIRQHandlerFar(&rtk32ISR); // chain to RTK-32 ISR
 9 }
 10
 11 main() {
 12 RTKernelInit(RTK_MIN_PRIO /* this task priority */);
 13 KBInit();
 14
 15 RTKDisableIRQ(TIMER_IRQ);
 16 RTKSaveIRQHandlerFar(TIMER_IRQ, &rtk32ISR);
 17 RTKSetIRQHandler(TIMER_IRQ, ISR); // hook up the custom ISR
 18 RTKEnableIRQ(TIMER_IRQ);
 19
 20 // set up the ticking rate consistent with TICKS_PER_SEC
 21 CLKSetTimerIntVal((unsigned)(1e6/TICKS_PER_SEC + 0.5));
 22 RTKDelay(1); // wait for the value to take effect
 23
 24 QF::init(. . .);
 25 QF::poolInit(. . .);
 26 activeA.start(. . .);
 27 . . .
 28 getc(stdin); // block the main thread until the user hits ENTER
 29 QF::cleanup();
 30 return 0;
 31 }

302 Chapter 9: Implementations of the Quantum Framework
Figure 9.6 Cross-development with RTKernel-32

Figure 9.6 shows how cross-development with RTKernel-32. In order to execute
RTKernel-32 code, you need two PCs — host and target — connected with a null-
modem serial cable.31 The target machine (any PC-compatible hardware in this case)
must boot from a specifically prepared boot floppy containing the RTTarget-32
debug monitor and must be connected to the host through COM1. The host machine
must be running under Microsoft Windows (95 or NT and above) and must be con-
nected to the target through any configurable COM port.

Exercise 9.3 Prepare both the host and target machines as shown in Figure 9.6 and as
described in the On Time documentation for RTOS-32 (included in the
RTOS-32 evaluation kit). Follow the On Time documentation [OnTime
01] to prepare the boot floppy and executable for the Hello example
application. Next, use Microsoft Developer Studio to download the code
to the target and single-step through the code in the debugger.

9.7 Summary
In this chapter, I filled in the necessary implementation details you need to
adapt the QF to specific computer platforms. The QF is designed for deployment
as a fine-granularity class library that you statically link with your applications.
The physical structure of the code anticipates platform dependencies up front
and allows an open-ended number of different QF ports.

You have seen QF ports to three very different software architectures, which
demonstrates the high portability of the QF and the flexibility of the design. The
spectrum of possible QF applications starts with low-end embedded systems without
a multitasking kernel, through desktop machines, to real-time systems running under

Null modem
serial cable

x86 Target

Boot floppy with
RTTarget-32 debug monitorx86 Host

31. In fact, the evaluation version of RTKernel-32 allows you to execute programs only after downloading code
from the host to the target (the fully licensed version supports several ways to bootstrap the target).

Summary 303
the control of a commercial RTOS. In all of these areas, the QF has many benefits to
offer, and you can use it in commercial products.

Every QF port is provided with full source code and is illustrated with sample
applications (described in the next chapter) that you can execute on your PC.
Although I discussed only the C++ version of the framework in this chapter, the
accompanying CD-ROM provides the equivalent C version as well.

304 Chapter 9: Implementations of the Quantum Framework

10

Chapter 10

Sample Quantum

Framework Application

The Golden Gate Bridge was built to withstand gales and strong
currents,… eleven workers died during the construction completed in
May 1937 … over 100,000 cars cross over it every day …
— San Francisco Tourist Guide

In the last two chapters, I dragged you through the internal workings of the Quan-
tum Framework (QF). The way the QF is coded internally resembles the construction
of a bridge over turbulent waters, and at times, it is like balancing on the edge of a
cliff without a safety net. Virtually every line of code, as with every step on a tight-
rope, poses risks. Are all possible scenarios of preemptions taken into account? Are
all sensitive code fragments protected with critical sections? Are the critical sections
short enough? Are priority inversions ruled out? Is the framework code watertight?
Well, I sure hope so,1 but this is neither productive nor the fun way of developing

1. I have thoroughly tested the code, but I cannot guarantee that it is correct. If you believe that you’ve found a
bug, please contact me at the address listed in the Preface.
305

306 Chapter 10: Sample Quantum Framework Application
software: it’s hard, it’s slow, it’s risky — it’s the conventional approach to multi-
threaded programming. However, the struggle is over. The bridge is now open for
traffic, so everybody can cross it quickly and comfortably, without taking much risk.

The QF offers you a faster, safer, and more reliable way of developing concurrent
software. A QF-based application has no need to fiddle directly with critical sections,
semaphores, and other such mechanisms. You can program without the constant fear
of race conditions, deadlocks, starvation, priority inversions, and other perils inher-
ent to traditional concurrent programming. Yet, your QF applications can reap all
the benefits of multithreading.

My goal in this chapter is to explain how to generate a QF application. First, I
explain the implementation of the active object–based solution to the dining philoso-
phers problem (DPP) introduced in Chapter 7, then I show you how to deploy the
code on different platforms. As always, every step is illustrated with executable
examples.

The second part of this chapter concentrates on the rules, heuristics, caveats, and
costs associated with using an active object–based framework in general and the QF
in particular. You can think of these issues as a small price to pay for the convenience
of application development — like the toll for crossing a bridge.

10.1 Generating a QF Application
Section 7.2.5 in Chapter 7 outlined an active object–based solution to the DPP. This
section implements that solution using the QF by (1) declaring signals and events, (2)
defining active objects, and (3) initializing the framework and start the active objects.

To keep it simple, the application is text based; that is, it simply outputs text to
the screen to report the state of the Philosopher active objects. Only the last step
(initializing the framework and starting active objects) is dependent on the concrete
platform. Consequently, the code is divided into two parts: the platform-independent
steps (1 and 2) and the platform-dependent step (3). Figure 9.1 in Chapter 9 shows
how the code is physically organized into files and directories.2

10.1.1 Signals and Events

The choice of signals is perhaps the most important design decision in any active
object–based system. The signals affect the other main application components:
events and active objects. Therefore, enumerating signals and devising event classes
are good starting points for building a QF application. You can start with drawing
sequence diagrams, as in Figure 7.4 in Chapter 7. This activity helps you discover the
necessary signals and think about specific event parameters. Naturally, your initial

2. Code organization of a multiplatform QF application mimics the structure of the QF itself.

Generating a QF Application 307
list of signals and event classes does not need to be complete and almost certainly
will grow and change as you progress through the development.

A natural place for declaring signals and event classes is the package scope header
file Cpp\Qdpp\Include\port.h (Figure 9.1 in Chapter 9) because all modules need
to share these elements.

Listing 10.1 Signals and events used in the DPP application

For smaller applications, such as the DPP, it is convenient to define all signals in
one enumeration (rather than in separate enumerations or, worse, as preproces-
sor #define macros). An enumeration automatically guarantees the uniqueness
of signals3 (Listing 10.1, lines 1–8). An additional bonus, as the result of an enumer-
ation, is automatic tracking of the total number of signals through the last element in
the enumeration (e.g., MAX_SIG in line 7). You need to know the total number of sig-
nals to allocate the subscriber list lookup table and initialize the framework (Section
8.5.2 in Chapter 8). Note that the user signals must start with the offset Q_USER_SIG
(line 2) to avoid overlapping the reserved signals.

Listing 10.1 defines only one generic EAT_SIG signal (line 4), rather than a spe-
cific EAT signal for each philosopher (see Exercise 10.1 for an alternative solution).
This design decision represents a trade-off between generality and performance. A
generic EAT_SIG signal makes changing the number of participating philosophers
easy4 but requires that each Philosopher state machine filters out only the events
pertaining to this particular Philosopher instance. Of course, generating and dis-
patching events that most subscribers ignore (four out of five) is wasteful and nega-
tively affects performance.

Lines 10 through 12 of Listing 10.1 show an example of an event class with
parameters. As described in Section 4.1.1 in Chapter 4, you specify event parameters

1 enum DPPSignals {
2 HUNGRY_SIG = Q_USER_SIG, //sent by philosopher when becoming hungry
3 DONE_SIG, // sent by philosopher when done eating
4 EAT_SIG, // sent by Table to let a philosopher eat
5 TIMEOUT_SIG, // timeout to end thinking or eating
6 //... insert new signals here
7 MAX_SIG // keep this signal always *last*
8 };
9
10 struct TableEvt : public QEvent {
11 int philNum; // philosopher number
12 };

3. Overlapping signals lead to especially nasty and hard-to-find bugs.
4. The other intention is to demonstrate how to multicast events.

308 Chapter 10: Sample Quantum Framework Application
by subclassing the QEvent base class. You must derive an event class for every set of
specific event parameters in your application. Typically, you will end up with fewer
event classes than signals, because not every signal requires a unique set of parame-
ters and some signals don’t need parameters at all. For example, the DPP application
needs only one specific parameter — the philosopher number declared in the
TableEvt class. The TableEvt class is associated with signals HUNGRY_SIG,
DONE_SIG, and EAT_SIG, but not with TIMEOUT_SIG, which does not require
parameters.

You should keep your event classes simple. In particular, avoid introducing con-
structors or protecting data members because (as described in Section 4.1.1 in Chap-
ter 4) constructors aren’t invoked when you dynamically create events with the
Q_NEW() macro. Protecting event data members just hinders access to event parame-
ters from within state handlers. As a reminder of the light-weight character of events,
Listing 10.1 uses struct rather than class for TableEvt (line 10).

Exercise 10.1 Change the definition of signals in Listing 10.1 by replacing the generic
EAT_SIG signal with a set of signals (EAT0_SIG, EAT1_SIG, …), repre-
senting permission to eat for a specific philosopher. Modify the imple-
mentations of the Table and Philosopher active objects accordingly.

10.1.2 Table Active Object

As mentioned in Chapter 7, a general rule for dealing with shared resources (forks in
the DPP example) is to encapsulate them inside a dedicated active object. In the DPP
case, the Table object encapsulates the forks and manages them for the rest of the
system.

Listing 10.2 Declaration of the Table active object

Listing 10.2 shows the declaration of the Table class. According to Figure 7.6a in
Chapter 7, the Table active object embodies a simple statechart with only one

1 class Table : public QActive { // Table active object
2 public:
3 Table() : QActive((QPseudoState)initial) {}
4 private:
5 void initial(QEvent const *e); // initial pseudostate
6 QSTATE serving(QEvent const *e); // state-handler
7 private:
8 int myFork[N]; // array of forks (a fork is USED or FREE)
9 int isHungry[N]; // array of hungry philosophers (TRUE/FALSE)
10 };

Generating a QF Application 309
serving state. Attributes myFork[] and isHungry[] represent the quantitative
aspects of this state (extended state variables).

Figure 10.1 Numbering of philosophers and forks (see the LEFT() and RIGHT()

macros in Listing 10.3).

Listing 10.3 State machine elements of the Table active object; boldface indicates

the QF services

1 #define RIGHT(i) (((i) + (N - 1)) % N)
2 #define LEFT(i) (((i) + 1) % N)
3 enum { FREE = 0, USED = !0 };
4
5 void Table::initial(QEvent const *) {
6 QF::subscribe(this, HUNGRY_SIG);
7 QF::subscribe(this, DONE_SIG);
8 for (unsigned n = 0; n < N; ++n) {
9 myFork[n] = FREE;
10 isHungry[n] = 0;
11 }
12 Q_INIT(&Table::serving);
13 }
14
15 QSTATE Table::serving(QEvent const *e) {
16 unsigned n, m;
17 TableEvt *pe;
18 switch (e->sig) {
19 case HUNGRY_SIG:
20 n = ((TableEvt *)e)->philNum; // extract sender’s ID
21 ASSERT(n < N && !isHungry[n]); // range and consistency check
22 printf("Philospher %1d is hungry\n", n);
23 m = LEFT(n); // left neighbor of philosopher "n"
24 if (myFork[m] == FREE && myFork[n] == FREE) { // can "n" eat?
25 myFork[m] = myFork[n] = USED;
26 pe = Q_NEW(TableEvt, EAT_SIG);
27 pe->philNum = n; // grant "n" permission to eat
28 QF::publish(pe);
29 printf("Philospher %1d is eating\n", n);

n

LEFT(n)RIGHT(n)
n LEFT(n)

RIGHT(n) LEFT(LEFT(n))

310 Chapter 10: Sample Quantum Framework Application
Listing 10.3 shows the implementation of the Table statechart.5 In the initial
transition (lines 5–13), you see how Table subscribes to the HUNGRY_SIG and
DONE_SIG signals (lines 6, 7). These signals trigger the internal transitions in the
serving state, defined in lines 15 through 62. This ordinary state handler imple-
ments a specific policy for resolving contentions over the forks. The numbering con-
vention for philosophers and forks shown in Figure 10.1, as well as the extensive
comments in Listing 10.3, should help you understand the algorithm. The novelty
here is creating, initializing, and publishing events (in lines 26–28, 44–46, and 54–
56, respectively). Note that occasionally the Table object grants two permissions to

30 }
31 else { // philosopher "n" has to wait for free forks
32 isHungry[n] = !0; // mark philosopher "n" hungry
33 }
34 return 0;
35 case DONE_SIG:
36 n = ((TableEvt *)e)->philNum; // extract sender’s ID
37 ASSERT(n < N); // ID must be in range
38 printf("Philospher %1d is thinking\n", n);
39 myFork[LEFT(n)] = myFork[n] = FREE; // free-up forks
40 m = RIGHT(n); // check the right neighbor
 41 if (isHungry[m] && myFork[m] == FREE) { // should it eat?
 42 myFork[n] = myFork[m] = USED; // pick up its forks
 43 isHungry[m] = 0; // mark philosopher "m" not hungry anymore
 44 pe = Q_NEW(TableEvt, EAT_SIG);
 45 pe->philNum = m; // grant "m" permission to eat
 46 QF::publish(pe);
 47 printf("Philospher %1d is eating\n", m);
 48 }
 49 m = LEFT(n); // check the left neighbor
 50 n = LEFT(m); // left fork of left neighbor
 51 if (isHungry[m] && myFork[n] == FREE) { // should it eat?
 52 myFork[m] = myFork[n] = USED; // pick up its forks
 53 isHungry[m] = 0; // mark philosopher "m" not hungry anymore
 54 pe = Q_NEW(TableEvt, EAT_SIG);
 55 pe->philNum = m; // grant "m" permission to eat
 56 QF::publish(pe);
 57 printf("Philospher %1d is eating\n", m);
 58 }
 59 return 0;
 60 }
 61 return (QSTATE)&Table::top;
 62 }

5. In Part I of this book, I described techniques for implementing statecharts.

Generating a QF Application 311
eat in response to one DONE_SIG (see also the sequence diagram in Figure 7.4 in
Chapter 7).

10.1.3 Philosopher Active Object

Typically, active objects tend to be Singletons (see the Singleton design pattern in
Gamma and colleagues [Gamma+ 95]), which means they have only one instance.
However, sometimes multiple instances of the same active object class can occur in a
system. For example, all philosophers are instances of the same Philosopher class.
In order to distinguish between these different instances, the Philosopher class
declares the myNum attribute, which is initialized in the constructor (Listing 10.4, line
3). In addition, every philosopher needs to track time while in the thinking or eat-
ing state. To do so, each philosopher uses a private QF timer, myTimer (line 11).

Listing 10.4 Philosopher active object derived from the QActive class

The Philosopher state machine implemented in Listing 10.5 is simple and self-
explanatory (especially in conjunction with the state diagram in Figure 7.6 in Chap-
ter 7). Note the use of a QTimer that is armed for a one-shot timeout on entry to the
thinking and eating states (lines 12, 42). In both of these states, the timeout signal
fires when the timer expires (TIMEOUT_SIG) and triggers the transition to the next
state in the life cycle of the state machine. Note that the QF does not publish timeout
signals globally; rather, it delivers them directly to each Philosopher instance.
Therefore, it is safe to use only one TIMEOUT_SIG signal for all philosophers. In con-
trast, Table publishes the generic EAT_SIG signal globally and all Philosopher
instances subscribe to it in line 5. Therefore, the hungry state needs a guard condi-
tion (line 30) to filter out events pertaining to a given instance. Note that the generic
EAT_SIG signal is received in all states, not just the hungry state. However, the
thinking and eating states ignore this signal (see Exercise 10.2).

 1 class Philosopher : public QActive {
 2 public:
 3 Philosopher(int n) : QActive((QPseudoState)initial), myNum(n) {}
 4 protected:
 5 void initial(QEvent const *e); // initial pseudostate
 6 QSTATE thinking(QEvent const *e); // state-handler
 7 QSTATE hungry(QEvent const *e); // state-handler
 8 QSTATE eating(QEvent const *e); // state-handler
 9 private:
 10 int myNum; // number of this philosopher
 11 QTimer myTimer; // to timeout thining or eating
 12 };

312 Chapter 10: Sample Quantum Framework Application
Listing 10.5 Implementation of the Philosopher state machine; boldface indicates

QF services are accessed

 1 enum { THINK_TIME = 7, EAT_TIME = 5 };
 2
 3 void Philosopher::initial(QEvent const *) {
 4 printf("Initializing philospher %1d\n", myNum);
 5 QF::subscribe(this, EAT_SIG);
 6 Q_INIT(&Philosopher::thinking);
 7 }
 8
 9 QSTATE Philosopher::thinking(QEvent const *e) {
 10 switch (e->sig) {
 11 case Q_ENTRY_SIG:
 12 myTimer.fireIn(this, TIMEOUT_SIG, THINK_TIME);
 13 return 0;
 14 case TIMEOUT_SIG:
 15 Q_TRAN(&Philosopher::hungry);
 16 return 0;
 17 }
 18 return (QSTATE)&Philosopher::top;
 19 }
 20
 21 QSTATE Philosopher::hungry(QEvent const *e) {
 22 TableEvt *pe;
 23 switch (e->sig) {
 24 case Q_ENTRY_SIG:
 25 pe = Q_NEW(TableEvt, HUNGRY_SIG);
 26 pe->philNum = myNum;
 27 QF::publish(pe);
 28 return 0;
 29 case EAT_SIG:
 30 if (((TableEvt *)e)->philNum == myNum) { // guard
 31 Q_TRAN(&Philosopher::eating);
 32 }
 33 return 0;
 34 }
 35 return (QSTATE)&Philosopher::top;
 36 }
 37
 38 QSTATE Philosopher::eating(QEvent const *e) {
 39 TableEvt *pe;
 40 switch (e->sig) {
 41 case Q_ENTRY_SIG:
 42 myTimer.fireIn(this, TIMEOUT_SIG, EAT_TIME);
 43 return 0;
 44 case TIMEOUT_SIG:

Generating a QF Application 313
Exercise 10.2 Modify the Philosopher::eating() state handler from Listing 10.5 to
intercept the generic EAT_SIG signal, and assert that the signal is not
addressed to this Philosopher instance. Hint: assert the converse of the
guard in line 30.

10.1.4 Deploying the DPP

In Chapter 9, I discussed the platform-dependent QF code for invoking QF::tick(),
initializing the framework, and starting active objects in various QF implementa-
tions. In every application, however, you need to make several application-specific
design decisions. First, you must choose unique active object priorities. For example,
you can assign priorities to the Philosopher active objects according to their num-
ber (1 through N) and assign the highest priority (N + 1) to the Table active object.

The second group of decisions pertains to sizing various memory buffers (event
queues, event pools, and stacks). In general, minimizing memory use requires some
nontrivial analysis, which Section 10.4 outlines later in this chapter. However, such
analysis is not justified for initial prototyping and for smaller applications (like the
DPP). In these cases, you can simply oversize event queues, event pools, and stacks.
For example, event queues of length N are definitely oversized in the case of a DPP
application. An event pool of size N2 is oversized as well. The following code frag-
ment shows static memory allocation for the DPP application.

 45 Q_TRAN(&Philosopher::thinking);
 46 return 0;
 47 case Q_EXIT_SIG:
 48 pe = Q_NEW(TableEvt, DONE_SIG);
 49 pe->philNum = myNum;
 50 QF::publish(pe);
 51 return 0;
 52 }
 53 return (QSTATE)&Philosopher::top;
 54 }

enum { N = 5 };
static Table aTable; // Table active object
static Philosopher aPhil[] = { 0, 1, 2, 3, 4 }; // 5 Philosophers
static QEvent *tableQueueSto[N]; // oversized event-queue for Table
static QEvent *philQueueSto[N][N]; // event-queues for Philosophers
static TableEvt regPoolSto[N*N]; //event-pool for Table events
static QSubscrList subscrSto[MAX_SIG]; // subscriber-lists

314 Chapter 10: Sample Quantum Framework Application
Exercise 10.3 Find the DOS version of the QF DPP application on the accompanying
CD-ROM and execute it on your PC (qdpp.exe runs in native DOS or
in a DOS window on Microsoft Windows).

Exercise 10.4 Find the Win32 version of the QF DPP application on the accompanying
CD-ROM and execute it on your PC.

Exercise 10.5 Find the RTKernel-32 version of the QF DPP application on the accom-
panying CD-ROM. Prepare the host/target environment as described in
Section 9.6 in Chapter 9 and download the application for execution on
the target machine.

10.1.5 Notes

You might object rightly that the QF-based solution to the DPP is bigger (when mea-
sured in lines of code) than a typical traditional solution. However, as I try to dem-
onstrate in the following discussion, none of the traditional approaches to DPP are in
the same class as the active object–based solution.

The active object–based solution might be a bit larger than the traditional solu-
tion, but the QF-based code is straightforward and free of all concurrency hazards.
In contrast, any traditional solution deals directly with low-level mechanisms, such
as semaphores or mutexes, and therefore poses a risk of deadlock, starvation, or sim-
ply unfairness in allocating CPU cycles to philosopher tasks.

However, what sets the active object–based solution truly apart is its unparalleled
flexibility and resilience to change. Consider, for example, how the initial problem
could naturally evolve into a more realistic application. For instance, starting a con-
versation seems a natural thing for philosophers to do. To accomplish such a new
feature (interaction among the philosophers), a traditional solution based on block-
ing philosopher threads would need to be redesigned from the ground up because a
hungry (blocked) philosopher cannot participate in the conversation. Blocked
threads are unresponsive.

A deeper reason for the inflexibility of the traditional solution is using blocking
to represent a mode of operation. In the traditional solution, when a philosopher
wants to eat and the forks aren’t available, the philosopher blocks and waits for the
forks. That is, blocking is equivalent to a very specific mode of operation (the hun-
gry mode), and unblocking represents a transition out of this mode. Only the fulfill-
ment of a particular condition (the availability of both forks) can unblock a hungry

Rules for Developing QF Applications 315
philosopher. The whole structure of the intervening code assumes that unblocking
can only happen when the forks are available (after unblocking, the philosopher
immediately starts to eat). No other condition can unblock the philosopher thread
without causing problems. Blocking is an inflexible way to implement modal behav-
ior.

In contrast, the active object–based computing model clearly separates blocking
from the mode (hungry) of operation and unblocking from the signaling of certain
conditions (the availability of forks). Blocking in active objects corresponds merely
to a pause in processing events and does not represent a particular mode of the active
object. Keeping track of the mode is the job of the active object’s state machine. A
blocked philosopher thread in the traditional solution can handle only one occur-
rence (the availability of the forks). In contrast, the state machine of a Philosopher
active object is more flexible because it can handle any occurrences, even in the hun-
gry state. In addition, event passing among active objects is a more powerful com-
munication mechanism than signaling on a semaphore. Apart from conveying some
interesting occurrence, an event can provide detailed information about the qualita-
tive aspects of the occurrence (by means of event parameters).

The separation of concerns (blocking, mode of operation, and signaling) in active
object–based designs leads to unprecedented flexibility, because now, any one of
these three aspects can vary independently of the others. In the DPP example, the
active object–based solution easily extends to accommodate new features (e.g., a
conversation among philosophers) because a Philosopher active object is as
responsive in the hungry state as in any other state. The Philosopher state machine
can easily accommodate additional modes of operation. Event-passing mechanisms
can also easily accommodate new events, including those with complex parameters
used to convey the rich semantic content of the conversation among philosophers.

10.2 Rules for Developing QF Applications
When developing active object–based applications, heed the following few strict rules.
• Active objects cannot share resources. In particular, they cannot share memory.
• Active objects can interact only through an asynchronous event exchange.
• Active objects cannot block in the middle of RTC processing to wait for each

other. In particular, they cannot block during event creation (due to an empty
event pool) or during event publishing (due to a full event queue).6

You should take these rules seriously and follow them religiously. In exchange,
the QF can guarantee that your application is free from concurrency hazards,

6. The QF does not allow you to block an empty event pool or a full event queue.

316 Chapter 10: Sample Quantum Framework Application
including race conditions, deadlocks, priority inversions, starvation, and nondeter-
minism.7 In addition, you are able to program in a purely sequential manner, with-
out ever needing to synchronize active objects with troublesome mechanisms,
including semaphores,8 mutexes, condition variables, mailboxes, and message
queues.

Still, within these constraints, you can develop responsive applications that make
good use of concurrency. In particular, QF applications can be fully deterministic and
can handle hard real-time deadlines efficiently.

The rules of using active objects impose a certain programming discipline. In
developing your QF applications, you will certainly be tempted to circumvent the
rules. Occasionally, sharing a variable among different active objects or a mutually
exclusive blocking active object threads might seem like the easiest solution. How-
ever, you should resist such quick fixes. First, you should convince yourself that the
rules are there for a good reason (e.g., see Chapters 7 and 8). Second, you must trust
that it is possible to arrive at a good solution without breaking the rules.

I repeatedly find that obeying the rules ultimately results in a better design and
invariably pays dividends in the increased flexibility and robustness of the final soft-
ware product. In fact, I propose that you treat every temptation to break the rules as
an opportunity to discover something important about your application. Perhaps
instead of sharing a variable, you will discover a new signal or a crucial event param-
eter that conveys some important information.

Many examples from other arts and crafts demonstrate that discipline can be
good for art. Indeed, an artist’s aphorism says, “Form is liberating.” As Fred Brooks
[Brooks 95] eloquently writes: “Bach’s creative output hardly seems to have been
squelched by the necessity of producing a limited-form cantata each week.”

I am firmly convinced that the external provision of an architecture such as the
QF enhances, not cramps, creativity.

Exercise 10.6 Note that only the Table active object in the DPP application sends out-
put to the screen by calling printf(). Why is calling printf() from the
Philosopher state machine not such a good idea?

7. Of course, these guarantees can be made only when the QF is based on a true, priority-based, real-time kernel
with correctly implemented event pools and event queues (see Section 9.3.3 in Chapter 9).

8. Occasionally, you might use a semaphore to implement blocking on an external device, but never to synchronize
with other active objects (see Section 8.5.4 in Chapter 8).

Heuristics for Developing QF Applications 317
Exercise 10.7 Philosopher active objects in the DPP application think and eat for a
fixed number of clock ticks. To make this application more interesting,
you might want to introduce random timeouts (by calling rand()). Why
is the standard random number generator inappropriate to use in the
Philosopher active objects?

10.3 Heuristics for Developing QF Applications
The active object–based computing model has been around long enough for pro-
grammers to accumulate a rich body of experience about how to best develop such
systems. For example, the real-time object-oriented modeling (ROOM) method of
Selic and colleagues [Selic+ 94] provides a comprehensive set of related development
strategies, processes, and techniques.

Throughout Part II of this book, you can find several basic guidelines for con-
structing active object–based systems. Here is the quick summary.
• Active object–based programming requires a paradigm shift from the conven-

tional approach to multithreading. In the traditional approach, you concentrate
on shared resources and various synchronization mechanisms, whereas in the
active object–based approach, you think about partitioning the problem and
about events exchanged among active objects.

• Your main goal is to achieve as loose a coupling as possible among active objects.
You seek a partitioning of the problem that avoids resource sharing and requires
minimal communication (in terms of number and size of exchanged events).

• The main strategy for avoiding resource sharing is to encapsulate the resources in
dedicated active objects that manage the resources for the rest of the system.

• The responsiveness of an active object is determined by the longest RTC step of its
state machine. To meet hard real-time deadlines, you need either to break up
longer processing into shorter steps or to move such processing to other, lower
priority active objects.

• A good starting point in developing an active object–based application is to draw
sequence diagrams for the primary use cases. These diagrams help you discover
signals and event parameters, which, in turn, determine the structure of active
objects.

• As soon as you have the first sequence diagrams, you should build an executable
model of it. The QF has been specifically designed to enable the construction and
execution of vastly incomplete (virtually empty) prototypes. The high portability
of the QF enables you to build the models on a different platform than your ulti-
mate target (e.g., your PC).

318 Chapter 10: Sample Quantum Framework Application
• Most of the time, you can concentrate only on the internal state machines of
active objects and ignore their other aspects (such as threads of execution and
event queues). In fact, generating a QF application consists mostly of elaborating
on the state machines of active objects. The powerful behavioral inheritance
meta-pattern (Chapter 4) and the basic state patterns (Chapter 5) can help you
with that part of the problem.
This list could go on for a long time. In fact, an in-depth coverage of the active

object–based paradigm could easily fill entire book. The few basic guidelines listed
here are intended just to get you started.

Note: Selic and colleagues [Selic +94] present perhaps the most comprehensive
discussion of active object–based computing from a variety of angles,
including analysis, design, tools, and process issues. Douglass [Douglas 99]
presents unique state patterns, safety-related issues, and a process applica-
ble to real-time development.

Instead of repeating here what you can find elsewhere, I devote the rest of this
chapter to the practical issue of sizing event queues and event pools. This subject,
although important to any real-life project, is not covered in the literature (at least
not in the specific context of active object–based systems).

10.4 Sizing Event Queues and Event Pools
Event queues and event pools are the necessary burden you need to accept when you
work with active objects. They are the price to pay for the convenience and speed of
development.

The main problem with event queues and event pools is that they consume your
precious memory. In order to minimize that memory, you need to size them appro-
priately. In this respect, event queues and pools are no different from execution
stacks — these data structures all trade some memory for the convenience of pro-
gramming.

Note that the problem with sizing event queues and event pools is common to all
active object–based frameworks,9 not specifically to the QF. For instance, application
frameworks that accompany design automation tools have this problem as well.
However, the tools handle the problem behind the scenes by using massively over-

9. In some active object–based systems, events are allocated from the heap instead of from event pools. Whichever
way it is done, the memory must be sized adequately.

Sizing Event Queues and Event Pools 319
sized defaults. In fact, you should do exactly the same thing: create massively over-
sized event queues and event pools in the early stages of development.

At some point, however, the problem will catch up with you. Ultimately, you need
to deploy the software on production hardware with minimal RAM. Even before
that, however, you need to develop a sense of the right size of event queues and event
pools in order to know how to oversize them in the first place. For some applications
(like the DPP), an event queue of length five is massively oversized, whereas in other
cases, such a queue is inadequate.

The correct sizing of event queues and event pools is especially important in QF
applications because the QF offers no excuses to overflow an event queue or to run
out of events in a pool. These situations are both treated as first-class bugs (Chapters
8 and 9), no different than running out of execution stack space, with potential con-
sequences that are just as disastrous.

10.4.1 Event Queues

One basic fact that you need to understand about event queues is that they work
only when the average event production rate <P(t)> does not exceed the average
event consumption rate <C(t)>. If this condition is not satisfied, the event queue is of
no use and always eventually overflows, no matter how big you make it. This fact
does not mean that the production rate P(t) cannot occasionally exceed the con-
sumption rate C(t), but that such a burst of event production can persist for only a
short time. The bursts should also be sufficiently spread out over time to allow
cleanup of the queue.

Some software designers try to work around these fundamental limitations by
using message queues in a more flexible way. For example, designers either allow
blocking of the producer threads when the queue is full, effectively reducing the pro-
duction rate P(t), or allow messages to be lost, effectively boosting the consumption
rate C(t). The QF views both techniques as an abuse of event queues and simply
asserts a contract violation. The basic premise behind this policy is that such a
creative use of event queues causes too many potentially dangerous side effects
(see Chapter 8).

The empirical method is perhaps the simplest and most popular technique used to
determine the required capacity of event queues, or any other buffers for that matter
(e.g., execution stacks). This technique involves running the system for a while and
then stopping it to examine how much of various buffers has been used. The QF
implementation of the event queue (the QEQueue class) maintains the attribute myN-
max specifically for this purpose (see Listing 9.6 in Chapter 9). You can inspect this
high-water mark easily using a debugger or through a memory dump (see Exercise
10.8). Is this value, however, a good measure of the required capacity? Perhaps not,
because seconds or minutes after the end of the experiment, event production can

320 Chapter 10: Sample Quantum Framework Application
increase dramatically. Even if you apply a fudge factor, such as adding 30 percent
extra capacity, you cannot absolutely trust the empirical method [Kalinsky 01].

The alternative technique relies on a static analysis of event production and event
consumption. The QF uses event queues in a rather specific way (e.g., there is only
one consumer thread); consequently, the production rate P(t) and the consumption
rate C(t) are strongly correlated.

For example, consider a QF application running under a preemptive, priority-
based scheduler.10 Assume further that the highest priority active object receives
events only from other active objects (but not from ISRs). Whenever any of the lower
priority active objects publishes an event for the highest priority object, the scheduler
immediately assigns the CPU to the recipient. The scheduler makes the context
switch because, at this point, the recipient is the highest priority thread ready to run.
The highest priority active object awakens and runs to completion, consuming any
event published for it. Therefore, the highest priority active object really doesn’t need
to queue events (the maximum length of its event queue is 1).

Exercise 10.8 The Table active object from the DPP application is the highest priority
active object that receives events only from the Philosopher active
objects, so utilization of the Table event queue should not go beyond 1.
Verify this fact by using the empirical method. Use the QF RTKernel-32
port from Exercise 9.2 in Chapter 9, because this version is based on the
preemptive, priority-based kernel and uses the QEQueue class (so you can
inspect the high-water mark myNmax).

When the highest priority active object receives events from ISRs, then more
events can queue up for it. In the most common arrangement, an ISR produces only
one event per activation. In addition, the real-time deadlines are typically such that
the highest priority active object must consume the event before the next interrupt.
In this case, the object’s event queue can grow, at most, to two events: one from a
task and the other from an ISR.

You can extend this analysis recursively to lower priority active objects. The max-
imum number of queued events is the sum of all events that higher priority threads
and ISRs can produce for the active object within a given deadline. The deadline is
the longest RTC step of the active object, including all possible preemptions by

10. The following discussion also pertains approximately to foreground/background systems with pri-
ority queues (see Section 9.4 in Chapter 9). However, the analysis is generally not applicable to desk-
top systems (e.g., Microsoft Windows or desktop Linux), where the concept of thread priority is
much fuzzier.

Sizing Event Queues and Event Pools 321
higher priority threads and ISRs. For example, in the DPP application, all Philoso-
pher active objects perform very little processing (they have short RTC steps). If the
CPU can complete these RTC steps within one clock tick, the maximum length of the
Philosopher queue would be three events: one from the clock-tick ISR and two11

from the Table active object.

Exercise 10.9 Apply the empirical method to determine the event queue utilization of
Philosopher active objects in the DPP application. Verify that the event
queues of higher priority philosophers are never longer than those of
lower priority philosophers (make sure you run the application long
enough). Extend the RTC step of the Philosopher state machine (e.g.,
spend some CPU cycles in a do-nothing loop) and observe when the
event queue of the lowest priority philosopher goes beyond 3. Look at
the event queue utilization of higher priority active objects.

The rules of thumb for the static analysis of event queue capacity are as follows.
• The size of the event queue depends on the priority of the active object.

Generally, the higher the priority, the shorter the necessary event queue. In
particular, the highest priority active object in the system immediately con-
sumes all events published by the other active objects and needs to queue
only those events published by ISRs.

• The queue size depends on the duration of the longest RTC step, including
all potential (worst-case) preemptions by higher priority active objects and
ISRs. The faster the processing, the shorter the necessary event queue. To
minimize the queue size, you should avoid very long RTC steps. Ideally, all
RTC steps of a given active object should require about the same number of
CPU cycles to complete.

• Any correlated event production can negatively affect queue size. For exam-
ple, sometimes ISRs or active objects produce multiple event instances in
one RTC step (e.g., the Table active object occasionally produces two per-
missions to eat). If minimal queue size is your priority, you should avoid
such bursts by, for example, spreading event production over many RTC
steps.

Remember also that the static analysis pertains to a steady-state operation after
the initial transient. On startup, the relative priority structure and the event produc-
tion patterns might be quite different. Generally, it is safest to start active objects in

11. Why two? See Section 10.1.2 and the discussion of Exercise 10.9 on the CD-ROM.

322 Chapter 10: Sample Quantum Framework Application
the order of their priority, beginning from the lowest priority active objects because
they tend to have the biggest event queues.

10.4.2 Event Pools

The size of event pools depends on how many events of different kinds you can sink
in your system. The obvious sinks of events are event queues because as long as an
event instance waits in a queue, the instance cannot be reused. Another potential
sink of events are event producers. A typical event publication scenario is to create
an event first (assigning a temporary variable to hold the event pointer), then fill in
the event parameters and eventually publish the event. If the execution thread is pre-
empted after event creation but before publication, the event is temporarily lost for
reuse.

In the simplest case of just one event pool (one size of events) in the system, you
can determine the event pool size by adding the sizes of all the event queues plus the
number of active objects in the system.

Exercise 10.10 Estimate the event pool size for the DPP application and compare it to
the empirical measurement. Hint: inspect the low-water mark (the
myNmin attribute) of the QEPool class.

When you use more event pools (the QF allows up to three, see Section 8.4.1 in
Chapter 8), the analysis becomes more involved. Generally, you need to proceed as
with event queues. For each event size, you determine how many events of this size
can accumulate at any given time inside the event queues and can otherwise exist as
temporaries in the system.

The minimization of memory consumed by event queues, event pools, and execu-
tion stacks is like shrink-wrapping your QF application. You should do it toward the
end of application development because it stifles the flexibility you need in the earlier
stages. Note that any change in processing time, interrupt load, or event production
patterns can invalidate both your static analysis and the empirical measurements.
However, it doesn’t mean that you shouldn’t care at all about event queues and event
pools throughout the design and early implementation phase. On the contrary,
understanding the general rules for sizing event queues and pools helps you conserve
memory by avoiding unnecessary bursts in event production or by breaking up
excessively long RTC steps. These techniques are analogous to the ways execution
stack space is conserved by avoiding deep call nesting and big automatic variables.

System Integration 323
10.5 System Integration
An important aspect of QF-based applications is their integration with the rest of
the embedded real-time software, most notably with the device drivers and the I/O
system.

Generally, this integration must be based on the event-passing mechanism. The
QF allows you to publish events from any piece of software, not necessarily from
active objects. Therefore, if you write your own device drivers or have access to the
device driver source code, you can use the QF facilities for creating and publishing
events directly.

You should view any device as a shared resource and, therefore, restrict its access
to only one active object. This method is safest because it evades potential problems
with reentrancy. As long as access is strictly limited to one active object, the sequen-
tial execution within the active object allows you to use non-reentrant code. Even if
the code is protected by some mutual exclusion mechanism, as is often the case for
commercial device drivers, limiting the access to one thread avoids priority inver-
sions and nondeterminism caused by the mutual blocking of active objects.

Accessing a device from just one active object does not necessarily mean that you
need a separate active object for every device. Often, you can use one active object to
encapsulate many devices.

10.6 Summary
The internal implementation of the QF uses the traditional techniques, such as criti-
cal sections and message queues. However, after the infrastructure for executing
active objects is in place, the development of QF-based applications can proceed
much easier and faster. The higher productivity comes from active objects that can be
programmed in a purely sequential way while the application as a whole still can
take full advantage of multithreading.

Generating a QF application involves defining signals and event classes, elaborat-
ing state machines of active objects, and deploying the application on a concrete
platform. The high portability of the QF enables you to develop large portions of the
code on a different platform than the ultimate target.

Active object–based applications tend to be much more resilient to change than
applications based on the traditional approach to multithreading. This high adaptabil-
ity is rooted in the separation of concerns in active object–based designs. In particular,
active objects use state machines instead of blocking to represent modes of operation
and use event passing instead of unblocking to signal interesting occurrences.

Programming with active objects requires some discipline on the part of the pro-
grammer because sharing memory and resources is prohibited. The experience of
many people has shown that it is possible to write efficient applications without

324 Chapter 10: Sample Quantum Framework Application
breaking this rule. Moreover, the discipline actually helps to create software products
that are safer, more robust, and easier to maintain.

You can view event queues and event pools as the costs of using active objects.
These data structures, like execution stacks, trade some memory for programming
convenience. You should start application development with oversized queues,
pools, and stacks and shrink them only toward the end of product development. You
can combine basic empirical and analytical techniques for minimizing the size of
event queues and event pools.

When integrating the QF with device drivers and other software components, you
should avoid sharing any non-reentrant or mutex-protected code among active
objects. The best strategy is to localize access to such code in a dedicated active
object.

11

Chapter 11

Conclusion

I would advise students to pay more attention to the fundamental ideas
rather than the latest technology. The technology will be out-of-date
before they graduate. Fundamental ideas never get out of date.
— David Parnas

For many years, I have been looking for a book or a magazine article that describes a
truly practical and reasonably flexible1 way of coding statecharts in a mainstream
programming language such as C or C++. I have never found such a technique.

I believe that this book is the first to provide what has been missing so far — a
flexible, efficient, portable, maintainable, and truly practical implementation of
statecharts that takes full advantage of behavioral inheritance. This book is perhaps
also the first to offer complete C and C++ code for a highly portable statechart-based
framework for the rapid development of embedded, real-time applications.

My vision for this book, however, goes further than an explanation of the code.
By providing concrete implementations of fundamental concepts, such as behavioral

1. I have never been satisfied with the techniques that require explicit coding of transition chains (see Chapter 3)
because it leads to inflexible, hard-to-maintain code and practically defeats the purpose of using statecharts in
the first place.
325

326 Chapter 11: Conclusion
inheritance and active object–based computing, the book lays the groundwork for a
new programming paradigm, which I call Quantum Programming (QP).

This last chapter summarizes the key elements of QP, how it relates to other
trends in programming, and what impact I think it might have in the future.

11.1 Key Elements of QP
In the Preface, I defined QP as the programming paradigm based on two fundamen-
tal concepts: (1) hierarchical state machines and (2) an active object–based comput-
ing model. Although independent in principle, these two ideas work best together.
You can realize these concepts in many ways; QP is one of them. Other examples
include the ROOM method (considered independent of the ObjecTime toolset) and
virtually every design automation tool for developing event-driven software.

What sets QP apart is its minimalist, code-centric, and low-level nature. This
characterization is not pejorative; it simply means that QP maps the fundamental
concepts directly to the source code, without intermediate layers of graphical repre-
sentations. QP clearly separates essentials from niceties by implementing the former
directly and supporting the latter only as design patterns. Keeping the implementa-
tion small and simple has real benefits. Programmers can learn and deploy QP
quickly without large investments in tools and training.2 They also can adapt and
customize the Quantum Framework (QF) easily to their particular situation, includ-
ing to severely resource-constrained environments. They can understand, and indeed
regularly use, all the features.

11.1.1 A Type of Design, Not a Tool

The most important point of QP is that the hierarchical state machine (as any other
profound concept in software) is a powerful type of design, not a particular tool. The
issue here is not a tool — the issue is understanding.

Code-synthesizing tools can have heft and substance, but they cannot replace a
conceptual understanding. For over a decade, various authors, in writing about stat-
echarts, have been asserting that the days of manual coding are gone and that state-
charts open a new era of automatic programming supported by visual tools.
However, with such an era of truly widespread automatic code synthesis still
nowhere near in sight, you are left today with no information on how to code state-
charts practically. Worse, you cannot access the accumulated knowledge about state-
charts because most of the designs exist only on paper, in the form of incomplete
state diagrams3 or, at best, as high-level models accessible only through specific

2. That is, programmers still need to learn the concepts. There is no way around that. However, they can skip
learning a tool.

Key Elements of QP 327
tools. This diffusion of information is unfortunate because instead of propagating a
true understanding of the technique, the tool-selling rhetoric creates misconceptions
in the software community and makes statecharts, as a type of design, inaccessible to
the majority of software practitioners.

The goals of QP are to dispel the various misunderstandings and make statecharts
more accessible to programmers. Although tools can help generate code from state
diagrams, they are not essential to take full advantage of the most fundamental stat-
echart features. Indeed, it is relatively simple to code statecharts directly in C or C++
and to organize them into fully functional applications founded on a statechart-
based application framework (the QF).

11.1.2 A Modeling Aid

Many software methodologists lament that programmers suffer from the rush-to-
code syndrome: a pervasive urge to crank out code instead of analyzing, designing,
modeling, documenting, and doing the other things that should precede and accom-
pany coding. This syndrome is not necessarily evil. Typically, it reflects the natural
and healthy instinct of programmers who want to engage in concrete development
instead of producing artifacts whose usefulness they mistrust. Therefore, rather than
fighting this instinct, QP helps jump-start the development process by rapidly build-
ing high-level, executable models.4 Such models allow you to perform analysis and
design by quickly exploring the problem space; yet, because the models are code, no
conflict exists with the rush-to-code syndrome.

QP supports rapid model building in several ways.
1. It lets you work at a high level of abstraction directly with hierarchical state

machines, active objects, and events.
2. It has been designed from the ground up so that you can compile and correctly

execute intentionally incomplete prototypes successfully. For example, the pub-
lish–subscribe event delivery of the QF does not require that you specify the
recipients of events, so a prototype still compiles, even if some active objects
(recipients of events) are missing. Similarly, automatic event recycling allows the
correct execution of applications (without memory leaks), even if some published
events are never received.

3. It lets you elaborate statecharts in layers of abstraction; that is, you can inten-
tionally leave the internal structure of composite states unspecified.

3. As described in Section 2.2.9 in Chapter 2, state diagrams are incomplete without a large amount of textual
information that details the actions and guards.

4. Such models correspond roughly to spike solutions in eXtreme Programming (XP).

328 Chapter 11: Conclusion
4. It lets you modify state machine topology easily at any stage of development. A
correctly structured state machine implementation is often easier to modify than
the corresponding state diagram.

Through support for executable prototypes, QP offers a light-weight alternative
to heavy-weight and high-ceremony CASE tools, for which rapid prototyping has
always been one of the biggest selling points. In fact, QP imitates many good features
of design automation tools. For example, the QF is conceptually similar to the
frameworks found in many such tools. The only significant difference between QP
and CASE tools is that the tools typically use a visual modeling language (e.g.,
UML), whereas QP uses C++ or C directly. In this respect, QP represents the view
that the levels of abstraction available in the conventional programming languages
haven’t yet been exhausted and that you do not have to leave these languages in
order to work directly with higher level concepts, such as hierarchical state machines
and active objects.

11.1.3 A Learning Aid

Repeatedly, the experience of generations of programmers has shown that to code
efficiently and confidently, a programmer must understand how the underlying con-
cepts are ultimately realized.

From my own experience, I recall how my understanding of OOP expanded when
I implemented object orientation from scratch in C.5 I had been using C++ for quite
a long time in a very object-oriented (or so I thought) manner. Yet, OOP truly got
into my bones only after I saw how it works internally. I started to think about OOP
as the way of design, rather than the use of a particular programming language. This
way of thinking helped me recognize fundamental OO concepts as patterns in many
more systems, which, in turn, helped me understand and improve many existing
implementations, not just those that are object oriented or coded in C++ or C (but,
e.g., in PL/M).6

I repeated the experience again, this time with the concepts of hierarchical state
machines and the active object–based computing model. I have studied ROOM and
have built state models with various tools, but I truly internalized the concepts only
after having implemented behavioral inheritance and the active object–based frame-
work.

What worked for me might work for you too. You can use the code I’ve provided
as a learning aid for understanding a concrete implementation of the fundamental
concepts. I believe that this book and the accompanying CD-ROM will help you

5. See Appendix A and [Samek 97].
6. At GE Medical Systems, I had a chance to work with an embedded system with 500,000+ lines of code pro-

grammed mostly in PL/M.

Propositions of QP 329
through the process7 in a few short weeks, rather than several years — the time it
took me. When you learn one implementation, you practically learn them all because
you understand the concepts. Tools and notations come and go, but truly fundamen-
tal concepts remain.

11.1.4 A Useful Metaphor

QP owes its name to a powerful analogy between state machines interacting via
asynchronous event passing and quantum systems interacting via the exchange of
virtual particles. A critique of this analogy might be that programmers are not famil-
iar enough with the physics concepts. However, the physics background necessary to
benefit from this analogy is really at the level of popular science articles.

Only recently has the software community started to appreciate the role of analo-
gies and metaphors in programming.8 A good metaphor is valuable in software for
several reasons.
1. It can foster the conceptual integrity of the software.
2. It can improve communications by providing a common vocabulary.
3. It can improve the usability of the end product.
4. It can speed up the learning of new concepts.

Chapter 7 (Section 7.3.1) discusses aspects 1 through 3. Here, I would like to
comment only on the last aspect: the role of the quantum metaphor in learning QP.

When people learn new things, they automatically try to map new concepts to
familiar ones in the spontaneous process of making analogies. A problem occurs
when these spontaneous analogies are incorrect. The new knowledge interferes with
the old knowledge (learning interference), and the learning process is more difficult
than it would be if the individual did not have the conflicting knowledge in the first
place [Manns+ 96]. A correct analogy provided explicitly to the student can speed up
the learning process in two ways: by providing correct associations to ease the inte-
gration of new concepts with familiar ones and by avoiding learning interference. In
this sense, the quantum metaphor can help you learn the fundamental concepts of
QP.

11.2 Propositions of QP
As I have indicated throughout this book, none of the elements of QP, taken sepa-
rately, are new. Indeed, most of the fundamental ideas have been around for at least

7. If you are a C programmer interested in QP, you might need to go through the exercises exactly in the order I
describe. First, study OOP in C (see Appendix A) and only then study QP in C.

8. Inventing a good metaphor is one of the key practices of eXtreme Programming [Beck 00].

330 Chapter 11: Conclusion
a decade. The contributions of QP are not in inventing new algorithms or new theo-
ries of design (although QP propagates a method of design that is not yet main-
stream); rather, the most important contributions of QP are fresh views on existing
ideas.

Challenging established views is important. An analogy from physics helps illus-
trate the point. Albert Einstein’s [Einstein 1905] famous publication marks the birth
of special relativity, not because he invented new concepts but because he challenged
the established views on the most fundamental ideas, such as time and space. How-
ever, and what is perhaps less well-known, in the very first sentence of his 1905 arti-
cle, Einstein gives his reason for shaking the foundations — the asymmetry between
Newton’s mechanics and Maxwell’s electromagnetism. Yes, the lack of symmetry
was enough for Einstein to question the most established ideas. Ever since, the most
spectacular progress in physics has been connected with symmetries.

In this sense, QP pays special attention to symmetries. The hydrogen atom exam-
ple from Chapter 2 shows how nesting of states arises naturally in quantum systems
and how it always reflects some symmetry of a system. This issue alone requires you
to consider hierarchical states as fundamental, not merely a nicety, as some method-
ologists suggest. QP further observes that behavioral inheritance is the consequence
of another symmetry — this time between hierarchical state machines and class tax-
onomies in OOP. Behavioral inheritance and class inheritance are two facets of the
same fundamental idea of generalization. Both, if used correctly, are subject to the
same universal law of generalization: the Liskov Substitution Principle (LSP) (see
Section 2.2.2 in Chapter 2), which requires that a subclass can be freely substituted
for its superclass.

The deep similarities among quantum physics, QP, and OOP allow me to make
some predictions. The assumption is that QP might follow some of the same devel-
opments that shaped quantum mechanics and OOP.

11.2.1 Quantum Programming Language

OOP had a long incubation period. Although the fundamental concepts of abstrac-
tion, inheritance, and polymorphism were known already in the late 1960s,9 OOP
came into the mainstream only relatively recently. Without a doubt, the main boost
for the adoption of object technology was the proliferation of OO programming lan-
guages in the 1980s.10 These languages included Smalltalk, Object Pascal, C++,
CLOS, Ada, and Eiffel [Booch 94].

QP might go a similar route. The fundamental concepts of hierarchical state
machines and active objects (actors) were known already in the 1980s. From

9. The first OO language was Simula 67, created in Scandinavia in 1967 to aid in solving modeling problems.
10. Some of these languages are characterized as being object based rather than fully object oriented [Booch 94].

Propositions of QP 331
their inception, these ideas have been supported by visual tools, such as Harel’s
[Harel+ 98] Statemate. However, as demonstrated in this book, the concepts are
viable also with nonvisual programming languages.

At this time, behavioral inheritance and an active object–based computing model
are just external add-ons to C++ or C. However, they lend themselves to being
natively supported by a quantum programming language, in the same way that
abstraction, inheritance, and polymorphism are natively supported by OO program-
ming languages.

The rationale for such a language is the usefulness of QP concepts in program-
ming reactive systems and the relatively low complexity of the implementation.
Behavioral inheritance is no more difficult to implement than polymorphism and is
probably easier than implementing multiple inheritance with virtual base classes in
C++. Yet, language-based support for behavioral inheritance offers arguably many
more benefits to programmers, especially to the embedded, real-time software com-
munity.

Integration of QP into a programming language could have many benefits. First, a
compiler could check the consistency and well formedness of state machines, thereby
eliminating many errors at compile time. Second, the compiler could simplify the
state machine interface for the clients (e.g., remove some artificial limitations of the
current QP implementation). Third, the compiler could better optimize the code.

Many possibilities exist for realizing such a quantum language. One option could
be to loosely integrate the QF into a programming language, as with built-in thread
support in Java.

11.2.2 RTOS of the Future

Rarely can you find a piece of software truly worth reusing, especially in the frag-
mented embedded software business. Perhaps the main reason is that reuse is expen-
sive, and there simply are not that many truly general pieces of functionality to
justify such expenses. One notable exception has always been a real-time operating
system (RTOS). Indeed, as hundreds of commercial and other RTOS offerings can
attest, the greatest demand for third-party software in the community is for the oper-
ating system.

More opportunities for the reasonable reuse of software exist in conjunction with
the functionality traditionally provided by RTOSs. State machines and active object–
based computing are truly general and need tight integration with an RTOS. In fact,
an active object–based framework, such as the QF, can replace a traditional RTOS.

Benefits of such integration are at least threefold. First, active objects provide a
better and safer computing model than conventional threading based on mutual
exclusion and blocking. Second, the spareness of concepts necessary to implement
the QF eliminates the need for many mechanisms traditionally supported in RTOSs.

332 Chapter 11: Conclusion
Therefore, the integrated system would not be bigger than the RTOS itself, and my
experience indicates that it would actually be smaller. Third, such an integrated
RTOS would provide a standard software bus11 for building open architectures.

11.2.3 Hardware/Software Codesign

Advancements in microelectronics have recently enabled the integration of complete,
complex systems on a single chip. To cope with the continuously increasing complex-
ity of such systems, designers are considering C and C++ more seriously as languages
for describing both hardware and software.12 The motivation for specifying hard-
ware in C/C++ is at least twofold: (1) to manage the increase in the level of abstrac-
tion compared to traditional description languages (e.g., VHDL and Verilog) for
hardware design; and (2) to reduce the programming language gap between software
and hardware engineers working on the same system.

QP, especially if supported natively by a C-like language, is an ideal platform for
uniformly representing both software and hardware, specifically because hardware
systems are reactive and concurrent by nature. Although at this time hardware
designs have not embraced the concept of hierarchical state machines, they almost
inevitably will as hardware rapidly approaches the levels of complexity previously
found only in software.

Conversely, increasing clock speeds, power dissipation issues, and the limited
memory bandwidth of modern hardware call for a different approach to software.
As clock cycles get shorter, some parts of a chip are no longer reachable in a single
cycle, and it is increasingly difficult to hide this distributed nature from the software.
Moreover, software seems increasingly important for intelligent power management
(e.g., clock gating — shutting off the clock in parts of the chip that are not in use).

In many respects, modern hardware starts to resemble relativistic quantum sys-
tems, in which the speed of signal propagation from one part of the system to
another is no longer instantaneous but limited by the speed of light. A quantum pro-
gramming language that incorporates the quantum analogy has all the mechanisms
to handle such signal latencies built in. A programming paradigm exposes the dis-
tributed nature of resources (hardware and software), instead of hiding them, as
more traditional software paradigms do. Interestingly, exposing the latencies
and resource distribution seems to be exactly what hardware experts are calling
for [Merritt 02].

11. Section 7.3.3 in Chapter 7 discusses the concept of the QF as a software bus.
12. For example, SystemC is an emerging standard of C/C++ class libraries that also includes a simulation kernel

that supports hardware modeling concepts (http://www.systemc.org).

An Invitation 333
11.3 An Invitation
This book, and even my speculative propositions, has only barely scratched the
surface of possibilities that the widespread adoption of fundamental concepts
such as behavioral inheritance and active object–based computing can bring.
Just think of the explosion of ideas connected with OOP. QP is based on no less
fundamental ideas and therefore will eventually make a difference in the soft-
ware community.

If you are interested in advancing the QP cause, you can become involved in
many areas.

• Port the QF to new operating systems and platforms, such as Linux,
VxWorks, QNX, eCos, MicroC/OS, and others.

• Provide replacements for conventional RTOSs by tightly integrating the
QF with schedulers.

• Use behavioral inheritance meta-pattern to capture and document new
state patterns precisely.

• Implement QP in languages other than C and C++ — for example, in
Java.

• Explore the possibilities of implementing a quantum programming lan-
guage, perhaps by modifying an open-source C or C++ compiler.

• Publish reusable, active object components.
• And so much more.
I have opened the official QP Web site at http://www.quantum-leaps.com. I

intend this site to contain ports, application notes, links, answers to frequently
asked questions, upgrades to the QF, and more. I also welcome contact regard-
ing QP through the e-mail address on this site.

334 Chapter 11: Conclusion

A

Appendix A

“C+” — Object-Oriented

Programming in C

C makes it easy to shoot yourself in the foot; C++ makes it harder,
but when you do, it blows away your whole leg.
— Bjarne Stroustrup

Many programmers mistakenly think that object-oriented programming (OOP) is
possible only with object-oriented languages like Smalltalk, C++, or Java. However,
OOP is not the use of a particular language or tool; it is a way to design programs
based on the following fundamental meta-patterns.
• Abstraction — the ability to package data with functions into classes.
• Inheritance — the ability to define new classes based on existing classes in order

to reuse and organize code.
• Polymorphism — the ability to substitute objects of matching interfaces for one

another at run time.
335

336 Appendix A: “C+” — Object-Oriented Programming in C
Although these patterns are traditionally associated with object-oriented lan-
guages, you can implement them in almost any programming language, includ-
ing C1 and assembly.2 Indeed, Frederick Brooks [Brooks 95] observes:

… any of these disciplines [object-oriented meta-patterns] can be had without
taking the whole Smalltalk or C++ package — many of them predated object-oriented
technology.

In fact, hardly any large software system, regardless of implementation language,
fails to use abstraction, inheritance, or polymorphism in some form. Easy-to-identify
examples include OSF/Motif (the popular object-oriented graphical user interface)
and Java Native Interface, both of which are implemented in C. You don’t need to
look far to find many more such examples.

OOP in an object-oriented language is straightforward because of native support
for the three fundamental meta-patterns. However, you can also implement these
patterns in other languages, such as C, as sets of conventions and idioms. I call my
set of such conventions and idioms “C+”3 [Samek 97]. The main objective of this
particular approach is to achieve performance and maintainability equivalent to that
in the C++ object model. In fact, “C+” is, to a large degree, an explicit reimplementa-
tion of the C++ object model (e.g., as described in [Lippman 96]).

As you’ll see, the implementation of OO meta-patterns in C is remarkably similar
to the behavioral inheritance meta-pattern presented in Chapter 4. In particular, for
maximum efficiency, both virtual functions and state handlers rely heavily on point-
ers to functions. This similarity is not accidental. It is another aspect of the deep
analogy between class inheritance and behavioral inheritance.

This appendix offers you an opportunity to peek under the hood and understand
the underlying implementation of fundamental object-oriented concepts. Such an
understanding will allow you to code more efficiently and with greater confidence.

A.1 Abstraction
As a C programmer, you already must have used abstract data types (ADTs). For
example, in the standard C run-time library, the family of functions that includes
fopen(), fclose(), fread(), and fwrite() operates on objects of type FILE. The
FILE ADT is encapsulated so that the clients have no need to access the internal
attributes of FILE. (Have you ever looked at what’s inside the FILE structure?) The

1. The original cfront C++ compiler translated C++ into C, which is perhaps the most convincing argument that all
C++ constructs can be implemented in plain C.

2. For example, Borland Turbo Assembler v4.0 [Borland 93] directly supports abstraction, inheritance, and poly-
morphism; therefore, it can be considered an object-oriented language.

3. I’d like to apologize to Marshall S. Wenrich of Software Remodeling Inc. for stealing the “C+” name from him.

Abstraction 337
only interface to FILE is through functions (methods), such as fopen(), fclose(),
fread(), fwrite(), fseek(), and fpos(). All these methods take a pointer to a
FILE object as one of the arguments. You can think of the FILE structure and the
associated methods that operate on it as the FILE class.

I will quickly summarize how the C run-time library implements the FILE class.
• Attributes of the class are defined with a C struct (the FILE struct).
• Methods of the class are defined as C functions. Each function takes a pointer to

the attribute structure (FILE*) as an argument. Class methods typically follow a
common naming convention (e.g., all FILE class methods start with f).

• Special methods initialize and clean up the attribute structure (fopen() and
fclose(), respectively). These methods play the roles of class constructor and
destructor.
The following code fragment declares the QHsm (quantum hierarchical state

machine) class. It demonstrates how you can make the association between
attributes and methods obvious with the use of a coding convention.

Listing A.1 Declaration of QHsm class

Each class method starts with the common class prefix (QHsm) and takes the
pointer to the attribute structure (QHsm*) as the first argument. I consistently call this
argument me. In C++, me corresponds to the implicit this pointer. In C, the pointer
must be explicit. I could have named it this in an analogy to C++ (which, in fact,
was my first impulse), but such a choice precludes using C classes in C++ because
this is reserved in C++. (Mixing C with C++ arises easily when you want to share
common code between C and C++ projects.) Besides, me is shorter than this, and
you will find yourself using many me->… constructs.

 1 typedef struct QHsm QHsm; /* Quantum HSM */
 2 struct QHsm { /* attributes of class QHsm */
 3 QState state__; /* the active state */
 4 QState source__; /* source state during a transiton */
 5 };
 6 /* methods of class QHsm ...*/
 7 QHsm *QHsmCtor_(QHsm *me, QPseudoState initial); /* protected Ctor */
 8 void QHsmXtor(QHsm *me); /* Xtor */
 9 void QHsmInit(QHsm *me); /* execute initial transition */
 10 void QHsmDispatch(QHsm *me, QEvent const *e); /* take RTC step */
 11 void QHsmTran_(QHsm *me, QState target); /* execute transition */
 12 QState QHsm_top(QHsm *me, QEvent const *); /* "top" state-handler */
 13 /* "inline" function as a macro */
 14 #define QHsmGetState(me_) ((me_)->state__)

338 Appendix A: “C+” — Object-Oriented Programming in C
Access control is the next aspect that Listing A.1 addresses with a coding conven-
tion. In C, you can only indicate your intention for the level of access permitted to a
particular attribute or method. Conveying this intention through the name of an
attribute or a method is better than just expressing it in the form of a comment at the
declaration point. In this way, unintentional access to class members in any portion
of the code is easier to detect (e.g., during a code review). Most object-oriented
designs distinguish the following levels of protection.
• Private — accessible only from within the class
• Protected — accessible only by the class and its subclasses
• Public — accessible to anyone (the default in C)

My convention is to use the double-underscore suffix (foo__) to indicate private
attributes and the single-underscore suffix (foo_, FooDoSomething_()) to indicate
protected members. Public members do not require underscores (foo, FooDoSome-
thing()). Typically, you don’t need to specify private methods in the class interface
(in the .h header file) because you can hide them completely in the class implementa-
tion file (declare them static in the .c implementation file).

Optionally, a class could provide one or more constructors and a destructor for
initialization and cleanup, respectively. Although you might have many ways to
instantiate a class (different constructors taking different arguments), you should
have just one way to destroy an object. Because of the special roles of constructors
and destructors, I consistently use the base names Ctor (FooCtor, FooCtor1) and
Xtor (FooXtor), respectively. The constructors take the me argument when they ini-
tialize preallocated memory, and return pointer to the initialized object when the
attribute structure can be initialized properly, or NULL when the initialization fails.
The destructor takes only the me argument and returns void.

As in C++, you can allocate objects statically, dynamically (on the heap), or auto-
matically (on the stack). However, because of C syntax limitations, you generally
can’t initialize objects at the definition point. For static objects, you can’t invoke a
constructor at all, because function calls aren’t permitted in a static initializer. Auto-
matic objects (objects allocated on the stack) must all be defined at the beginning of a
block (just after the opening brace ‘{’). At this point, you generally do not have
enough initialization information to call the appropriate constructor; therefore, you
often have to divorce object allocation from initialization. Some objects might
require destruction, so it’s a good programming practice to explicitly call destructors
for all objects when they become obsolete or go out of scope. As described in Section
A.3, destructors can be polymorphic.

Inheritance 339
Exercise A.1 Define three preprocessor macros—CLASS(class_), METHODS, and
END_CLASS—so that the declaration of class QHsm from Listing A.1 can
be rewritten as

Exercise A.2 Using typedef, define QPseudoState as a pointer to the member func-
tion of class QHsm, taking no arguments (other than me) and returning
void.

Exercise A.3 Using typedef, define another type QState as a pointer to the member
function of class QHsm, taking an immutable pointer to QEvent
(QEvent const *) and returning QPseudoState.

A.2 Inheritance
Inheritance is a mechanism that defines new and more specialized classes in terms of
existing classes. When a child class (subclass) inherits from a parent class (super-
class), the subclass then includes the definitions of all the attributes and methods that
the superclass defines. Usually, the subclass extends the superclass by adding
attributes and methods. Objects that are instances of the subclass contain all data
and can perform all operations defined by both the subclass and its parent classes.

You can implement inheritance in a number of ways in C. The objective is to
embed the parent attributes in the child so that you can invoke the parent’s methods
for the child instances as well (inheritance). One of the techniques is to use the pre-
processor to define class attributes as a macro [Van Sickle 97]. Subclasses invoke this
macro when defining their own attributes as another preprocessor macro. “C+”
implements single inheritance by literally embedding the parent class attribute struc-
ture as the first member of the child class structure. As shown in Figure A.1(c), this
arrangement lets you treat any pointer to the Child class as a pointer to the Parent

CLASS(QHsm)
 QState state__;
 QState source__;
METHODS
 QHsm *QHsmCtor_(QHsm *me, QPseudoState initial); /* Ctor*/
 void QHsmXtor(QHsm *me); /* Xtor */
 . . .
END_CLASS

340 Appendix A: “C+” — Object-Oriented Programming in C
class. In particular, you can always pass this pointer to any C function that expects a
pointer to the Parent class. (To be strictly correct in C, you should explicitly upcast
this pointer.) Therefore, all methods designed for the parent class are automatically
available to child classes; that is, they are inherited.

Figure A.1 (a) UML class diagram showing the inheritance relationship between

Child and Parent classes; (b) declaration of Child structure with

embedded Parent as the first member super; (c) memory alignment of

a Child object

This simple approach works only for single inheritance (one-parent classes) because
a class with many parent classes cannot align attributes with all of those parents.

I name the inherited member super to make the inheritance relationship between
classes more explicit (a loan from Java). The super member provides a handle for
accessing the attributes of the superclass. For example, a grandchild class can access

Example of Inheritance in C

Seasoned C programmers often intuitively arrive at designs that use inheritance. For
example, in the original µC/OS Real-Time Kernel, Jean Labrosse defines a type
OS_EVENT [Labrosse 92]. This abstraction captures a notion of an operating system
event, such as a semaphore, a mailbox, or a message queue. The µC/OS clients never
deal with OS_EVENT directly, because it is an abstract concept. Such an abstract class
captures the commonality among inter-task synchronization mechanisms and enables
uniform treatment of all operating system events.

The evolution of this concept in subsequent versions of µC/OS is interesting. In the
original version, no OS_EVENT methods exist; the author replicates identical code for
semaphores, mailboxes, and message queues. In MicroC/OS-II [Labrosse 99],
OS_EVENT has been fully factored and is a separate class with a constructor
(OSEventWaitListInit()) and methods (OSEventTaskRdy(), OSEventTask-
Wait(), OSEventTaskTO()). The methods are subsequently reused in all specializa-
tions of OS_EVENT, such as semaphores, mailboxes, and message queues. This reuse
significantly simplifies the code and makes it easier to port to different microprocessor
architectures.

(a) (b)
Parent

Child

(c)

Attributes
added by

Child

Attributes
inherited from

Parent

mestruct Parent {
 . . .
};

struct Child {
 struct Parent super;
 . . .
};

Polymorphism 341
its grandparent’s attribute foo, as in me->super.super.foo, or by directly upcast-
ing it, as in ((Grandparent *)me)->foo.

Inheritance adds responsibilities to class constructors and the destructor. Because
each child object contains an embedded parent object, the child constructor must ini-
tialize the portion controlled by the parent through an explicit call to the parent’s
constructor. To avoid potential dependencies, the superclass constructor should be
called before initializing the attributes. Exactly the opposite holds true for the
destructor. The inherited portion should be destroyed as the last step.

Exercise A.4 Define preprocessor macro SUBCLASS(class_, super_), so that a
class Calc (calculator) derived from class QHsm can be defined as
follows

Exercise A.5 Provide definition of the Calc class constructor CalcCtor() and the
destructor CalcXtor(). Hint: don’t forget to explicitly con-
struct/destroy the superclass QHsm.

A.3 Polymorphism
Conveniently, subclasses can refine and redefine methods inherited from their parent
classes. More specifically, a class can override behavior defined by its parent class by
providing a different implementation of one or more inherited methods. For this pro-
cess to work, the association between an object and its methods cannot be estab-
lished at compile time.4 Instead, binding must happen at run time and is therefore

SUBCLASS(Calc, QHsm)
 HWND hWnd_; /* the calculator window handle */
 BOOL isHandled_;
 char display_[40];
 char *ins_;
 double operand1_;
 double operand2_;
 int operator_;
METHODS
 Calc *CalcCtor(Calc *me);
 void CalcXtor(Calc *me);
 . . .
END_CLASS

4. Some subclasses might not even exist yet at the time the superclass is compiled.

342 Appendix A: “C+” — Object-Oriented Programming in C
called dynamic binding. Dynamic binding lets you substitute objects with identical
interfaces (objects derived from a common superclass) for each other at run time.
This substitutability is called polymorphism.

Perhaps the best way to appreciate dynamic binding and polymorphism is to look
at some real-life examples. You can find polymorphism in many systems (not neces-
sarily object-oriented) often disguised and called hooks or callbacks.

As the first example, I’ll examine dynamic binding implemented in hardware.
Consider the interrupt vectoring of a typical microprocessor system, an x86-based
PC. The specific hardware (the programmable interrupt controller in the case of the
PC) provides for the run-time association between the interrupt request (IRQ) and
the interrupt service routine (ISR). The IRQ is an asynchronous message sent to the
system by asserting one of the pins, and the ISR is the code executed in response to
an IRQ. Interrupt handling is polymorphic because all IRQs are handled uniformly
in hardware. Concrete PCs (subclasses of the GenericPC class), such as YourPC and
MyPC (Figure A.2), can react quite differently to the same IRQ. For example, IRQ4
can cause YourPC to fetch a byte from COM1 and MyPC to output a byte to LPT2.

Figure A.2 YourPC and MyPC as subclasses of the GenericPC class

As another example of a system using polymorphism, consider the MS-DOS
device driver design shown in Figure A.3. MS-DOS specifies two abstract types of a
device: character and block. A character device performs input and output a single
character at a time. Specific character devices include the keyboard, screen, serial
port, and parallel port. A block device performs input and output in structured
pieces, or blocks. Specific block devices include disk drives and other mass storage
devices.

The abstract classes MS-DOS_Device_Driver, CharacterDeviceDriver, and
BlockDeviceDriver from Figure A.3 are specified only in the MS-DOS documenta-
tion, not a programming language. Still, MS-DOS drivers clearly use the Polymor-
phism design pattern. As long as device drivers comply with the specification (which
is to extend one of the two abstract device driver classes), they can be substituted for
one another and are treated uniformly by the operating system.

IRQ1()
IRQ2()
IRQ3()
. . .

«abstract»
GenericPC

YourPC MyPC

Polymorphism 343
Figure A.4 Dynamic binding in MS-DOS as implemented by the Int 21h functions

MS-DOS also can be viewed as a abstract superclass for specific implementations,
such as MS-DOS v5.0 or MS-DOS v6.22 (Figure A.4). The Int 21h functions provide
the portable dynamic binding mechanism used to invoke operating system services
from applications. This mechanism allows you to upgrade MS-DOS from v5.0 to
v6.22, for example, without affecting the MS-DOS applications.

As you probably noticed in the previous examples, dynamic binding always
involves a level of indirection in method invocation. In C, this indirection can be pro-
vided by function pointers grouped into virtual tables (VTABLEs; Figure A.5). The
function pointer stored in the VTABLE represents a method (a virtual method in
C++), which a subclass can override. All instances (objects) of a given class have a
pointer to the VTABLE of that class (exactly one VTABLE per class exists). This
pointer is called the virtual pointer (VPTR). Late binding is a two-step process of (1)
dereferencing the VPTR to get to the VTABLE, and (2) dereferencing the desired
function pointer to invoke the specific implementation.

Each object involved in dynamic binding must store the VPTR to the VTABLE of
its class. One way to enforce this condition is to require that all classes using poly-
morphism be derived, directly or indirectly, from a common abstract base class,

Figure A.3 MS-DOS device driver taxonomy

StrategyRoutine()
InterruptRoutine()

dhLink
dhAttributes
dhStrategy
dhInterrupt
dhNameOrUnits

«abstract»
MS_DOS_DeviceDriver

KeyboardDriver SerialDriver

«abstract»
CharacterDeviceDriver

«abstract»
BlockDeviceDriver

FloppyDriver IDE_Driver

Int21Function00h()
Int21Function01h()
Int21Function02h()
. . .

«abstract»
MS_DOS

MS_DOS_5.0 MS_DOS_6.22

344 Appendix A: “C+” — Object-Oriented Programming in C
Object (again, a loaner from Java). The VTABLEs themselves require a separate and
parallel class hierarchy, because the virtual methods, as well as the attributes, need to
be inherited. The root abstract base class for the VTABLE hierarchy is the
ObjectVTABLE class. Listing A.2 provides the “C+” declaration of these two base
classes.

Listing A.2 Declaration of the Object and ObjectVTABLE abstract base classes

Figure A.5 Run-time relationships between objects, VTABLEs, and method

implementations

super__
xtor__

theObjectVTABLE

NULL

super__
xtor__
methodA

theFooVTABLE

super__
xtor__
methodA

theBarVTABLE

vptr__

ObjectFoo1

vptr__

ObjectFoo2

vptr__

ObjectFoo3

vptr__

ObjectBar1

vptr__

ObjectBar2

ObjectAbstract() {
 ASSERT(0);
}

FooXtor(Foo *me) {
 . . .
 ObjectXtor(me);
}

FooMethodA(Foo *me, ...) {
 . . .
}

BarXtor(Foo *me) {
 . . .
 FooXtor(me);
}

BarMethodA(Bar *me, ...) {
 . . .
}

 1 CLASS(Object)
 2 struct ObjectVTABLE *vptr__; /* private vpointer */
 3 METHODS
 4 /* protected constructor 'inline'... */
 5 # define ObjectCtor_(_me_) \
 6 ((_me_)->vptr__ = &theObjectVTABLE, (_me_))
 7 /* destructor 'inline'... */
 8 # define ObjectXtor_(_me_) ((void)0)
 9 /* dummy implementation for abstract methods */
10 void ObjectAbstract(void);
11 /* RTTI */
12 # define ObjectIS_KIND_OF(_me_, _class_) \
13 ObjectIsKindOf__((Object*)(_me_), &the##_class_##Class)
14 int ObjectIsKindOf__(Object *me, void *class);
15 END_CLASS

Polymorphism 345
The Object class is declared in Listing A.2 (lines 1–15). Its only attribute is the
private virtual pointer vptr__ (line 2). The Object class is abstract, which means
that it is not intended to be instantiated (only inherited from) and therefore protects
its constructor ObjectCtor_() and destructor ObjectXtor_(). Other facilities
supplied by the Object class include a dummy implementation ObjectAbstract()
(line 10), to be used for abstract (pure virtual) methods, and a simple run-time type
identification (RTTI), defined as the ObjectIS_KIND_OF() macro (lines 12, 13).

The purpose of the ObjectVTABLE class (Listing A.2, lines 17–22) is to provide
an abstract base class for the derivation of VTABLEs. The first private attribute
super__ (line 19) is a pointer to the VTABLE of the superclass. You can identify it
with the generalization arrow pointing from the subclass to the superclass in the
UML class diagram.5 The second attribute (line 20) is the virtual destructor, which
subsequently is inherited by all subclasses of ObjectVTABLE. Consistent with the
“C+” convention, it is defined as a pointer to a function that takes only the me
pointer and returns void. Although there can be many instances of the attribute
class, there should be exactly one instance of the VTABLE for any given class — a
VTABLE singleton.6 This sole instance for any given class Class is called the
ClassVTABLE. The VTABLE instance for the Object class (theObjectVTABLE) is
declared in line 24.

The hierarchies of the attribute classes (rooted in the Object class) and VTABLEs
(rooted in the ObjectVTABLE class) must be exactly parallel. The following macro
SUBCLASS() encapsulates the construction of a subclass (see Exercise A.5).

16
17 CLASS(ObjectVTABLE)
19 ObjectVTABLE *super__; /* pointer to superclass' VTABLE */
20 void (*xtor)(Object *); /* public virtual destructor */
21 METHODS
22 END_CLASS
23
24 extern ObjectVTABLE theObjectVTABLE; /* Object class VTABLE */

5. That is why the arrow denoting inheritance points from the subclass to the superclass.
6. Here, I only use the name of the Singleton design pattern [Gamma+ 95] to denote a class with a single instance

(lowercase singleton), not necessarily to apply the pattern strictly.

#define SUBCLASS(class_, superclass_) \
 CLASS(class_) \
 superclass_ super_;

346 Appendix A: “C+” — Object-Oriented Programming in C
Similarly, building the VTABLE hierarchy and declaring the VTABLE singletons can
be encapsulated in the VTABLE() macro.

VTABLE singletons, as with all other objects, need to be initialized through their
own constructors, which the preprocessor macros can automatically generate. The
body of the VTABLE constructor can be broken into two parts: (1) copying the
inherited VTABLE and (2) initializing or overriding the chosen function pointers.
The first step is generated automatically by the macro BEGIN_VTABLE().

Listing A.3 BEGIN_VTABLE() macro

This macro first defines the object, which is the ClassVTABLE instance (Listing
A.3, line 2), then starts defining the static VTABLE constructor (line 3). First, this
constructor makes a copy (by value) of the inherited VTABLE (lines 5, 6), which
guarantees that adding new virtual functions to the superclass won’t break any sub-
classes. After adding the attributes or methods to the superclass, no manual changes
to the subclasses are required. You only have to recompile the subclass code. Unless a
given class explicitly chooses to override the superclass behavior, the inherited or
copied virtual functions are adequate. Of course, if a class adds its own virtual func-
tions, the corresponding function pointers are not initialized during this step.

The second step of binding virtual functions to their implementation is facilitated
by the VMETHOD() macro.

#define VMETHOD(class_, meth_) ((class_##VTABLE *)me)->meth_

This macro is an lvalue, and its intended use is to assign to it the appropriate func-
tion pointer as follows.

VMETHOD(Object, xtor) = (void (*)(Object *))QHsmXtor_;

Generally, to avoid compiler warnings, you must explicitly upcast the function
pointer to take the superclass me pointer (Object* in this case) rather than the sub-
class pointer (QHsm* in this case). The explicit upcasting is necessary, because the C

#define VTABLE(class_, superclass_) }; \
 typedef struct class_##VTABLE class_##VTABLE; \
 extern class_##VTABLE the##class_##VTABLE; \
 struct class_##VTABLE { \
 superclass_##VTABLE super_;

 1 #define BEGIN_VTABLE(class_, superclass_) \
 2 class_##VTABLE the##class_##VTABLE; \
 3 static ObjectVTABLE *class_##VTABLECtor(class_ *t) \
 4 register class_##VTABLE *me = &the##class_##VTABLE; \
 5 *(superclass_##VTABLE *)me = \
 6 *(superclass_##VTABLE *)((Object *)t)->vptr__;

Polymorphism 347
compiler doesn't know that QHsm is related to Object by inheritance and treats these
types as completely different.

If you don’t want to provide the implementation for a given method because it is
intended to be abstract (a pure virtual in C++), you should still initialize the corre-
sponding function pointer with the ObjectAbstract() dummy implementation. An
attempt to execute ObjectAbstract() aborts the execution through a failed asser-
tion, which helps detect unimplemented abstract methods at run time. The definition
of every VTABLE constructor opened with BEGIN_VTABLE() must be closed with the
following END_VTABLE macro:

The attribute and virtual method class hierarchies mostly grow independently.
However, they are coupled by the VPTR attribute, which needs to be initialized to
point to the appropriate VTABLE singleton, as shown in Figure A.5. The appropriate
place to set up this pointer is, of course, the attribute constructor. You must set up
this pointer after the superclass constructor call because the constructor sets the
VPTR to point to the VTABLE of the superclass. If the VTABLE for the object under
construction is not yet initialized, the VTABLE constructor should be called. These
two steps are accomplished by invoking the VHOOK() macro.

Listing A.4 VHOOK() macro

To determine whether the VTABLE has been initialized, the macro VHOOK()
checks the super__ attribute (Listing A.4, line 2). If the attribute is NULL (value
implicitly set up by the guaranteed in C static pointer initialization), then the VTABLE
constructor must be invoked (line 3) before setting up the VPTR; otherwise, just the
VPTR must be set up (lines 5-6). Note that because VHOOK() is invoked after the
superclass constructor, the VTABLE of the superclass is already initialized by the
same mechanism applied recursively, so the whole class hierarchy is initialized prop-
erly.

#define END_VTABLE\
 ((ObjectVTABLE*)me)->super__ = ((Object*)t)->vptr__; \
 return (ObjectVTABLE *)me; \
 }

 1 #define VHOOK(class_) \
 2 if (((ObjectVTABLE *)&the##class_##VTABLE)->super__== 0) \
 3 ((Object *)me)->vptr__ = class_##VTABLECtor(me); \
 4 else \
 5 ((Object *)me)->vptr__ = \
 6 (ObjectVTABLE *)&the##class_##VTABLE

348 Appendix A: “C+” — Object-Oriented Programming in C
Finally, after all the setup work is done, you are ready to use dynamic binding.
For the virtual destructor (defined in the Object class), the polymorphic call takes
the form

where obj is assumed to be of Object* type. Note that the obj pointer is used in
this example twice: once for resolving the method and once as the me argument.

In the general case, you deal with Object subclasses rather than the Object class
directly. Therefore you have to upcast the object pointer (on type Object*) and
downcast the virtual pointer vptr__ (on the specific VTABLE type) to find the func-
tion pointer. These operations, as well as double-object pointer referencing, are
encapsulated in the macros VPTR(), VCALL(), and END_CALL.

The virtual destructor call on behalf of object foo of any subclass of class Object
takes the following form.

If a virtual function takes arguments other than me, they should be sandwiched
between the VCALL() and END_CALL macros. The virtual function can also return a
result. For example, in

obj points to a Foo class or any subclass of Foo, and the virtual function compute-
Something() is defined in FooVTABLE. Note the use of the comma after VCALL().

Exercise A.6 Implement in C+ the classic polymorphic example of geometric shapes.
Concrete shapes, such as Rectangle and Circle, derive from the com-
mon abstract base class Shape. The shape class provides the abstract
method area() that returns the area of a given shape. Concrete shapes
implement this method differently (e.g., Rectangle computes its area as
a×b, while Circle computes its area as π×r2). Instantiate a few objects
of each class and test the polymorphic area() method.

(*obj->vptr__->xtor)(obj);

#define VPTR(class_, obj_) \
 ((class_##VTABLE *)(((Object *)(obj_))->vptr__))
#define VCALL(class_, meth_, obj_) \
 (*VPTR(class_, _obj_)->meth_)((class_*)(obj_)
#define END_CALL)

VCALL(Object, xtor, foo)
END_CALL;

result = VCALL(Foo, computeSomething, obj), 2, 3,
 END_CALL;

Costs and Overheads 349
A.4 Costs and Overheads
Any OO programmer can benefit from understanding costs associated with using
the OO layer. Abstraction typically incurs no overhead and actually often brings
some performance boost. If an ADT truly abstracts a useful concept, the OO style of
programming typically results in fewer arguments passed to the methods because all
attributes are passed as only one me argument.

Inheritance also is mostly free. The invocation of an inherited method on
behalf of a distant successor object is exactly as expensive as invocation on
behalf of the parent object. The only overhead comes from constructor invoca-
tion, which must initialize all parts inherited from superclasses, which, if the
hierarchy is deep, could require additional stack space for nested superclass
constructor calls.

In contrast, polymorphism always incurs some memory and run-time costs. As
far as memory is concerned, each class requires space for its VTABLE. The
space required is typically several bytes for function pointers. In addition to this
one-time memory cost, each object must contain the VPTR, which is inherited
directly or indirectly from the Object class. If many instances of a class exist,
the VPTRs in each object can easily add up to something significant.

The run-time cost of virtual call dispatching (dynamic binding) in “C+” is
similar to C++. In fact, most compilers generate identical code for “C+” and C++
virtual calls. The following code fragment highlights this overhead for a typical
CISC (complex instruction set computing) processor (x86 running in protected
32-bit mode).

As you can see, dynamic binding requires only one more assembly instruction
than static binding. Additionally, you need to dereference VPTR (the me pointer
is already in the ebx register) and place the address of the VTABLE into the eax
register. The call also requires one more memory access to fetch the address of
the appropriate function from the VTABLE.

; static binding: ShapeXtor(c)
 push ebx ; push “me” (in ebx) onto the stack
 call _ShapeXtor ; static call
 add esp, 4 ; pop the stack

; dynamic binding: VCALL(Object, xtor, c)END_CALL
 mov eax, DWORD PTR [ebx+0] ; get VPTR into eax
 push ebx ; push “me” (in ebx) onto the stack
 call DWORD PTR [eax+4] ; dynamic call
 add esp, 4 ; pop the stack

350 Appendix A: “C+” — Object-Oriented Programming in C
To complete the picture, now consider the virtual call overhead on a RISC
(reduced instruction set computing) architecture using an ARM7 instruction set.

In this case, the static call is extremely fast, with only two instructions, and does not
involve any data accesses, thanks to the ARM branch-and-link instruction bl.
Unfortunately, the dynamic call cannot take advantage of the bl instruction because
the address cannot be statically embedded in the bl opcode; therefore, an additional
instruction that saves the return address into the link register (lr) is necessary. Oth-
erwise, dynamic binding overhead is very similar to that of the CISC processor and
involves two additional data accesses (the two highlighted ldr instructions) to deref-
erence the VPTR and to dereference the function pointer.

A.5 Summary
OOP is a design method rather than the use of a particular language or tool. Indeed,
as David Parnas [Brooks 95] writes:

Instead of teaching people that OO is a type of design, and giving them design
principles, people have taught that OO is the use of a particular tool. We can write
good or bad programs with any tool. Unless we teach people how to design, the
languages matter very little.

OO languages support OO design directly, but you can also successfully imple-
ment OO design in other languages, such as C. Abstraction, inheritance, and poly-
morphism are nothing but design meta-patterns at the C level. Many C
programmers, very likely you as well, have been using these fundamental patterns in
some form or another for years, often without clearly realizing it. As with all design
patterns, the three patterns combined allow you to work at a higher (OO) level of
abstraction by introducing their specific naming conventions and idioms.

In this appendix, you learned “C+,” which is one specific set of such C conven-
tions and idioms that achieves performance and maintainability of code comparable

; static binding: ShapeXtor(c)
 mov a1,v1 ; move “me” (in v1) into a1 (argument1)
 bl _ShapeXtor ; static call (branch with link)

; dynamic binding: VCALL(Object, xtor, c)END_CALL
 mov a1,v1 ; move “me” (in v1) into a1 (argument1)
 ldr a2,[v1,#0] ; get VPTR into a2
 mov lr,pc ; save return address
 ldr pc,[a2,#4] ; dynamically call xtor

7. ARM is a trademark of Advanced RISC Machines Limited.

Summary 351
to C++. A particularly important feature of “C+” is the high code maintenability.
You can add new attributes and methods to superclasses without having to make any
manual changes to subclasses. As in C++, after extending the superclass, you only
need to recompile the subclass implementation files.

I have been using “C+” successfully in many projects for number of years, and I
challenge you to find a more efficient, scalable, portable, and maintainable imple-
mentation. However, perhaps the weakest aspect inherent in any attempt to imple-
ment OOP in C (not just “C+”) is that type safety is compromised. The fundamental
problem is that a C compiler does not recognize that some types are generalizations
of others and treats related types as completely different. This issue requires a lot of
type casting (upcasting), which is awkward and defeats much of the type safety of
the language.

Therefore, if you have access to a decent C++ compiler for your platform, I rec-
ommend that you consider using it instead of “C+.” Contrary to the general view,
especially among embedded systems programmers, C++ is not inherently bulky and
slow. By sticking only to the essential OO features of C++ and omitting pretty much
everything else (Embedded C++ [EC++ 01] provides an excellent example), you can
achieve very good performance, elegance, convenience, and full compiler support for
OOP.

352 Appendix A: “C+” — Object-Oriented Programming in C

B

Appendix B

Guide to Notation

The good thing about bubbles and arrows, as opposed to
programs, is that they never crash.
— Bertrand Meyer

In this appendix, I describe the graphical notation that I use throughout the book.1

The notation should be compatible with version 1.4 of the UML specification2

[OMG 01]. The timing diagrams are not part of the UML. I adapted them from
Douglass [Doublass 99].

B.1 Class Diagrams
A class diagram shows classes, their internal structures, and the static (compile-time)
relationships among them. Figure B.1 shows the various presentation options for
classes.

1. In this appendix, I do not include the informal data structure diagrams that show particular C or C++ data
structures at run time.

2. I prepared all diagrams with Visio ™ Technical v4.0. The accompanying CD-ROM contains the Visio stencil
that I used.
353

354 Appendix B: Guide to Notation
Figure B.1 Various levels of detail, visibility, and properties of classes

• A class is always denoted by a box with the class name in bold type at the top.
Optionally, just below the name, a class box can have an attribute compartment
that is separated from the name by a horizontal line. Below the attributes, a class
box can have an optional method compartment.

• The UML notation allows you to distinguish abstract classes, which are classes
intended only for derivation and cannot have direct instances. Figure B.1c shows
the notation for such classes. The abstract class name appears in italic font.
Optionally you may use the «abstract» stereotype. If a class has abstract methods
(pure virtual member functions in C++), they are shown in an italic font as well.

• Sometimes it is helpful to provide pseudocode of some methods by means of a
note (Figure B.1c).

• Finally, a class box can also show the visibility of attributes and methods, as
in Figure B.1d.

Figure B.2 Different presentation options for the generalization and specialization

of classes

Figure B.2 shows the different presentation options for inheritance (the is-a-kind-
of relationship). The generalization arrow always points from the subclass to the
superclass. The right-hand side of Figure B.2 shows an inheritance tree that indicates
an open-ended number of subclasses.

ClassName

attribute
attribute : DataType
. . .

ClassName

abstractMethod() : ResultType
method(arg_list)
. . .

«abstract»
AbstractClassName

for every attribute {
 attribute.foo();
}

– privateMethod()
protectedMethod()
+ publicMethod()
+$ publicClassMehotd()

– privateAttribute
protectedAttribute
+ publicAttribute
+$ publicClassAttribute

ClassName
(a)

(b)

(c)
(d)

other
potential
subclassesmethod()

...

attribute
...

«abstract»
Superclass

Subclass

Superclass

Subclass2

attribute
attribute :
DataType
...

Subclass1

Subclass2Subclass1

Superclass

Class Diagrams 355
Figure B.3 Aggregation, navigability, and multiplicity

Figure B.3 shows the aggregation of classes (the has-a-component relationship).
An aggregation relationship implies that one object physically or conceptually con-
tains another. The notation for aggregation consists of a line with a diamond at its
base. The diamond is at the side of the owner class (whole class), and the line extends
to the component class (part class). The full diamond represents physical contain-
ment; that is, the instance of the part class physically resides in the instance of the
whole class (composite aggregation). A weaker form of aggregation, denoted with an
empty diamond, indicates that the whole class has only a reference or pointer to the
part instance but does not physically contain it. A name for the reference might
appear at the base (e.g., part1 in Figure B.3). Aggregation also could indicate multi-
plicity and navigability between the whole and the parts.

Figure B.4 Design pattern as a collaboration of classes

Figure B.4 shows a collaboration of classes as a dashed ellipse containing the
name of the collaboration (stereotyped here as a pattern). The dashed lines emanat-
ing from the collaboration symbol to the various elements denote participants in the
collaboration. Each line is labeled by the role that the participant plays in the collab-
oration. The roles correspond to the names of elements within the context for the
collaboration; such names in the collaboration are treated as parameters that are
bound to specific elements on each occurrence of the pattern within a model [OMG
01).

composite aggregation
unidirectional navigability

aggregation
bidirectional navigability

1..*

0..1

0..*

part1 : Part1Class
part2 : Part2Class*
...

WholeClass

Part2Class

Part1Class
part1

«pattern»
behavioral
inheritance

myState : QState
...

«abstract»
QHsm

Calc QHsmTst

abstract
hierarchical
state machine
base class

concrete
HSMs

356 Appendix B: Guide to Notation
B.2 Statechart Diagrams
A statechart diagram shows the static state space of a given context class, the events
that cause a transition from one state to another, and the actions that result.

Figure B.5 States and a transition

Figure B.5 shows the presentation options for states and the notation for a state
transition. A state is always denoted by a rectangle with rounded corners. The name
of the state appears in bold type at the top. Optionally, right below the name, a
state can have an internal transition compartment separated from the name by a
horizontal line. The internal transition compartment can contain entry actions
(actions following the reserved symbol entry), exit actions (actions following the
reserved symbol exit), and other internal transitions (e.g., those triggered by EVT
in Figure B.5).

A state transition is represented as an arrow originating at the boundary of the
source state and pointing to the boundary of the target state. At a minimum, a tran-
sition must be labeled with the triggering event. Optionally, the trigger can be fol-
lowed by event parameters, a guard, a list of actions, and a list of events that have
been sent.

Figure B.6 Composite state, initial transitions, and the final state

Figure B.6 shows a composite state (superstate) that contains other states (sub-
states). Each composite state can have a separate initial transition to designate the
initial substate. Although Figure B.6 shows only one level of nesting, the substates
can be composite as well.

EVT (a, b) [guard()] / action(), ^EVT_A

trigger

event
parameters

guard

actions sent
events

transition

state

entry/ action1()
exit/ x=3
EVT(a, b)[guard()]/
action2()
...

stateName

stateA stateB

initial
transition

STOP
C

A

B
C

stateC

entry/
stateA

stateB

entry/ action1()
exit/ x=3
EVT/

compositeStateName superstate

substatefinal state

Sequence Diagrams 357
Figure B.7 Orthogonal regions and pseudostates

Figure B.7 shows composite stateA with the orthogonal regions (and-states) sepa-
rated by a dashed line and two pseudostates: the dynamic choice point and deep his-
tory.

B.3 Sequence Diagrams
A sequence diagram shows a particular sequence of event instances exchanged
among objects at run time. A sequence diagram has two dimensions: the vertical
dimension represents time and the horizontal dimension represents different
objects. Time flows down the page (the dimensions can be reversed, if desired).

Figure B.8 shows an example of a sequence diagram. Object boxes, together with
the descending vertical lines, represent objects participating in the scenario. As
always in the UML specification, the object name in each box is underlined (some
objects are identified only by a colon and a class name). Heavy borders indicate con-
current objects.

Events are represented as horizontal arrows originating from the sending
object and terminating at the receiving object. Optionally, thin rectangles
around instance lines can indicate focus of control. Sequence diagrams also can
contain state marks to indicate explicit state changes resulting from the event
exchange.

B.4 Timing Diagrams
A timing diagram shows the explicit changes of state in one or more objects along
a single time axis. Timing diagrams are not in the UML standard and are
adopted here from Douglass [Douglass 99].

Figure B.9 shows an example of a timing diagram for multiple objects (T1, T2,
and T3). The timing diagram has two dimensions: time along the horizontal axis and
the object state along the vertical axis. Each object is assigned a horizontal band
across the diagram (a “swim lane”) separated from other bands by dashed lines. Pre-
sentation options include deadlines, propagated events, and jitter.

stateA

stateAA stateABA X

stateAC

C

Y

stateB

stateBA

stateBB
B

[x >=0]

else
A

B

dynamic
choice point

deep history
pseudostate

H*

self transition

358 Appendix B: Guide to Notation
Figure B.9 Timing diagram

Figure B.8 Sequence diagram

thinking

eating

hungry

:QF m:Philosopher n:Philosopher :Table

thinking

hungry

thinking

eating

TIMEOUT

TIMEOUT

TIMEOUT
HUNGRY(m)

HUNGRY(n)

EAT(n)

EAT(m)

DONE(n)

time

changes
of state

focus
of control

events

objects

0

blocked
ready

running

T1

blocked
ready

running

T2

blocked
ready

running

T3

time

malloc()
(promotion)

event

event

demotion

5 10 15 20

done

done

done

malloc() done

states deadlineevent jitter

C

Appendix C

CD-ROM

In a double-speed CD-ROM, the pits go flying by the focused spot at a
rate of 1,200,000 pits per second. As they do, the servo system adjusts
the tracking and the focus of the laser beam so that it remains within
about ±0.1µm of the track center and within about ±2µm of the correct
focus position even though the CD-ROM disc may be wobbling from
side-to-side by ±70µm (44 track diameters) and up-and-down by
±600µm as it rotates. The performance of this opto-electronic system is
truly remarkable.
— Murray Sargent III and Richard L. Shoemaker
 The Personal Computer from the Inside Out

The companion CD-ROM contains all the source code and executable images men-
tioned in the book, including several ports of the Quantum Framework (QF). The disc
also includes answers to the exercises scattered throughout the book, the Evaluation
Version of On Time RTOS-32 v4.0, Visio™ stencils used to create the diagrams in this
book, and several references in Adobe Portable Document Format (PDF).1

1. A copy of Adobe Acrobat Reader™ is included on the CD-ROM for your convenience.
359

360 Appendix C: CD-ROM
The CD-ROM is designed for maximum usefulness, even without installing any
of it on your hard drive. In particular, you can browse the source code, execute
examples, and read PDF documents directly from the CD.

The disc comes with an HTML-based index page, index.htm, in its root direc-
tory (Figure C.1). It is automatically activated if the CD autoinsert notification is
enabled on your system. You need a Web browser (e.g., Microsoft Internet Explorer
or Netscape Navigator) to view the index.

Figure C.1 CD index

Source Code Structure 361
C.1 Source Code Structure
The structure of the source code on the disc does not strictly reflect the chapter struc-
ture of the book, so that I would avoid repetition of the central QF implementation.
The CD index page lists all the source code directories and describes their contents.

You can browse the code directly on the CD or simply copy selected files to your
hard disk for modifications. For your convenience, the disc also contains an installa-
tion program, which installs the source code, the projects, and prebuilt libraries.

C.2 Installation
The Installation HTML page on the CD contains links to three self-extracting instal-
lation programs, which you can install by simply clicking on the links under
Microsoft Windows.

C.2.1 Source Code

The self-extracting installation program <CD>:\Installations\QPcode.exe
installs the complete Quantum Programming (QP) source code. You will be
prompted to select an installation directory and a program group in your Start
Menu. The typical setup will install all source code components (the C++, C, and
C++ with MI [multiple inheritance]) to your hard disk. The custom setup allows you
to selectively install only certain components. The installation creates the same direc-
tory structure on the CD-ROM as on your hard drive, so the relative links of the
index page will still work correctly. The complete installation requires about 60 Mb
of your hard drive because it contains a complete software build (object files, pro-
gram databases, libraries, etc.).

C.2.2 On Time RTOS-32 Evaluation Kit

On Time’s RTOS-32 is a royalty-free, embedded, real-time operating system for x86-
compatible CPUs. You need to install the On Time RTOS-32 Evaluation Kit v4.0 if
you intend to run the real-time examples from Part II of the book. The file
<CD>:\Installations\RTOS-32.exe is a self-extracting Windows installation
program. The Evaluation Kit can be uninstalled completely and easily.

In order to build QF applications, you also need to define the environment vari-
able RTTARGET and append %RTTARGET%\bin to the execution PATH. On Microsoft
Windows 95/98, you need to add the following two lines to the autoexec.bat file.

set RTTARGET=<target directory>\RTOS-32
PATH=%RTTARGET%\bin;%PATH%

362 Appendix C: CD-ROM
On Microsoft Windows NT/2000, you need to define the environment variable and
the path in the corresponding System dialog box.

C.2.3 Adobe Acrobat Reader

The CD-ROM includes several documents in Adobe PDF. To view such documents,
you need Adobe Acrobat Reader. If you do not have Acrobat Reader, you can down-
load the latest version free from the Adobe Web site or install version 5.0 from the
CD-ROM.

C.3 Answers to the Exercises
The Exercises HTML page on the CD (Figure C.2) contains answers to all of the
exercises in the book. The many links to the source code work directly on the CD-
ROM or after installation to your hard disk.

C.4 Resources
The CD-ROM contains several of the references (listed in the Bibliography) in PDF.
Among others, the documents include the OMG UML Specification v1.4 [OMG 01]
and the On Time RTOS-32 Manual [OnTime 01].

For your convenience, the CD also contains the Visio™ stencil and template that I
used to draw all the diagrams in this book. One of the main goals of QP is to provide
a light-weight alternative to heavy-weight and expensive design automation tools.
Such tools typically come with a drawing package to create various diagrams. In
fact, most of the tools, if they are used at all, end up as overpriced drawing packages.
To this end, a good drawing program does as much for you as a fancy CASE tool.

As described on the Resources page, you incorporate the stencil into Visio by
copying <CD>:\Resources\Visio\Software-UML.vss to your Visio\Stencils
directory and <CD>:\Resources\Visio\Software-UML.vst to your Visio\Tem-
plate directory.

I have tried both the stencil and the template with the newer version of Visio
(Visio 2000), and they seem to work correctly.

Resources 363
Figure C.2 Exercises page

364 Appendix C: CD-ROM

Bibliography
Amber, Scott. 2001. “Debunking Modeling Myths.” Software Development, August.

Barr, Michael. 1999. Programming Embedded Systems in C and C++. O'Reilly &
Associates.

Beck, Kent. 2000. Extreme Programming Explained. Addison-Wesley.

Booch, Grady. 1994. Object-Oriented Analysis and Design with Applications.
Addison-Wesley.

Borland. 1993. Borland turbo Assembler v4.0.

Brooks, Frederick P. 1987. “No Silver Bullet: Essence and Accidents of Software
Engineering.” Computer, April, 10-19.

Brooks, Frederick. 1995. The mythical man-month. Anniversary ed. Addison Wesley.

Cargill, Tom. 1994. “Exception Handling: A False Sense of Security.” C++ Report,
November-December.

Deshpande, Akash. 2001. Creating advanced network infrastructure based on network
processors. RTC, October (vol. 10, no. 10), 56–59. (www.rtcmagazine.com)

Dijkstra, Edsger W. 1965. Cooperating Sequential Processes, Technology Report
EWD-123, Eindhoven, Netherlands.
365

366 Bibliography
Dijkstra, Edsger W. 1971. Hierarchical ordering of sequential processes. Acta
Informatica 1:115–138.

Douglass, Bruce Powell. 1998, State machines and state charts. Pts. 1 and 2.
Proceedings of the Embedded Systems Conference, Spring. Chicago.

Douglass, Bruce Powell. 1999. Doing hard time, developing real-time systems with
UML, objects, frameworks, and patterns. Addison Wesley.

Douglass, Bruce Powel. 1999. Real-Time UML, Second Edition: Developing Efficient
Objects for Embedded Systems, Addison-Wesley.

Douglass, Bruce Powel. 1999. “UML Statecharts.” Embedded Systems Programming,
January, 22-42.

Duby, Carolyn. 2001. Class 203: Implementing UML statechart diagrams. Proceedings
of Embedded Systems Conference, Fall. San Francisco.

[EC++] Embedded C++ Technical Committee. 2001. www.caravan.net/ec2plus

Eckel, Bruce. 1995. Thinking in C++. Prentice Hall.

Einstein, Albert. 1905. Zur Elektrodynamik bewegter Körper. Annalen der Physik und
Chemie. IV Folge, Band 17, 891–921.

Englebart, D., and W. English. 1968. A research center for augmented human intellect.
AFIPS Conference Proceedings, Fall Joint Computer Conference, 9–11 December,
395–410. San Francisco.

Epplin, Jerry. 1998. “Adapting Windows NT to Embedded Systems”, Embedded
Systems Programming, June, 44-61.

Fowler, Martin, Kent Beck, John Brant, William Opdyke, Don Roberts. 1999.
Refactoring: Improving the Design of Existing Code, Addison-Wesley.

Fowler, Martin. 2001. “The Agile Manifesto.” Software Development.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
patterns, elements of reusable object-oriented software. Addison Wesley.

Ganssle, Jack G. 2000 The Art of Designing Embedded Systems, Newnes.

Gomez, Martin, “Embedded State Machine Implementation”, Embedded Systems
Programming, December 2000, pp. 40–50.

Bibliography 367
Halzen, Francis, Alan D. Martin. 1984. Quarks and Leptons: An Introductory Course
in Modern Particle Physics, John Wiley & Sons.

Harel, David. 1987. Statecharts: A visual formalism for complex systems. Science of
Computer Programming (no. 8), 231–274.

Harel, David, and Michal Politi. 1998. Modeling Reactive Systems with Statecharts,
The STATEMATE Approach. McGraw-Hill.

Hejlsberg, Anders. 2001. Simplexity–complexity wrapped in something simple.
Acceptance speech for the Dr. Dobbs Journal’s Excellence in Programming Award
presented at the Software Development Conference West. San Jose, California.

Hewitt, Carl, P. Bishop, and R. Steiger. 1973. “A universal, modular actor formalism for
artificial intelligence”, 3rd International Joint Conference on Artificial
Intelligence, 235–245.

Horrocks, Ian. 1999. Constructing the User Interface with Statecharts.
Addison-Wesley.

Horstmann, Cay S. 1995. Mastering Object-Oriented Design in C++, John Wiley &
Sons.

IAR Systems visualSTATE® http://www.iar.com/Products/VS/

Interactive Software Engineering,
www.eiffel.com/doc/manuals/technology/contract/page.html

Kalinsky, David, 1998. “Mutexes Prevent Priority Inversions”, Embedded Systems
Programming, August, 76-81.

Kalinsky, David. 2001. “Queueing Theory for Dummies”, Embedded Systems
Programming, April, 63-72.

Kapp, Steve. 2000. “Design by Contract for C Programmers”, Embedded Systems
Programming, July, 100-106.

Labrosse, Jean J. 1992a. A portable real-time kernel in C. Embedded Systems Pro-
gramming, May, 40–53.

Labrosse, Jean J. 1992b. Implementing a real-time kernel. Embedded Systems Pro-
gramming, June, 44–49.

Labrosse, Jean J. 1992c. µC/OS, The Real-Time Kernel, R&D Publications.

368 Bibliography
Labrosse, Jean J., MicroC/OS-II, The Real-Time Kernel. CMP Books, 1999,
ISBN 0-87930-543-6

Lafreniere, David. 1998. An efficient dynamic storage allocator. Embedded Systems
Programming, September, 72–80.

Leveson, Nancy, and Clark S. Turner. An investigation of the Therac-25 accidents. IEEE
Computer, July.

Leveson, Nancy. 1995. Safeware: system safety and computers. Addison-Wesley.

Lippman, Stanley. 1996. Inside the C++ object model. Addison Wesley.

Maguire, Steve. 1993. Writing solid code. Microsoft Press.

Manns, Mary Lynn and H. James Nelson. 1996. “Retraining procedure-oriented
developers: An issue of skill transfer.” Journal of Object-Oriented Programming,
November/December, 6–10.

Mellor, Steve. 2000. “UML Point/Counterpoint: Modeling Complex Behavior Simply.”
Embedded Systems Programming, March 2000, 38–42.

Merritt, Rick. 2002. Software model needs overhaul. EE Times, 2 January (no. 1199),
5. (www.eet.com)

Meyer, Bertrand. 1997. Object-oriented software construction. 2nd ed. Prentice Hall.

Meyer, Bertrand. 1997. "UML: The Positive Spin", Cutter IT Journal,Volume X, No.
3 (former Ed Yourdon's American Programmer).

Meyer, Bertrand. 1997. Letters from readers (response to the article “Put it in the
contract: The lessons of Ariane” by Jean-Marc Jézéquel, and Bertrand Meyer), IEEE
Computer, Vol. 30, No. 2, February, 8–9, 11.

Microsoft. 2001. Microsoft Knowledge Base article Q96418.

Moore, Gordon, E. 1965. Cramming more components onto integrated circuits.
Electronics, 19 April (vol. 38, no. 8).

Murphy, Niall, 2000.“Open Source Point/Counterpoint: Are Open Source and
Innovation Compatible?”, Embedded Systems Programming, September, 78–86.

Bibliography 369
Murphy, Niall. 2001a. Assertiveness Training for Programmers. Embedded Systems
Programming, April, 53–60.

Murphy, Niall. 2001b. Assert yourself. Embedded Systems Programming, May, 27–32.

OnTime. 2000. Refer to the On Time documentation on the accompanying CD-ROM.

OnTime. 2001. Refer to the On Time documentation on the accompanying CD-ROM.

Opdyke, William F., “Refactoring Object-Oriented Frameworks”, Ph. D. Thesis,
University of Illinois at Urbana-Champaign, 1992. NOTE: this document is available
in PDF from the accompanying CD-ROM (\Resources\Opdyke92.pdf)

Object Management Group, Inc. 2001. OMG Unified Modleing Language
Specification v1.4, http://www.omg.org, September.

Parnas, David L. 1976. On the design and development of program families. IEEE
Transactions On Software Engineering (SE-2, 1), March, 1–9.

Petzold, Charles. 1996. Programming Windows 95, The Definite Developer’s Guide
to the Windows 95 API. Microsoft Press, 1996.

Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy, William
Lorenson. 1991. Object-Oriented Modeling and Design, Prentice Hall.

Samek, Miro. 1997. Portable Inheritance and Polymorphism in C. Embedded Systems
Programming. December, 54–66.

Samek, Miro and Paul Y. Montgomery. 2000. State-Oriented Programming. Embedded
Systems Programming, August, 22–43.

Schlaer, S., Steve Mellor. 1991. Object Lifecycles: Modeling The World in States.
Yourdon Press.

Sha, L., R. Rajkumar, J.P. Lehocsky. 1990. Priority Inheritance Protocols: An Approach
to Real-Time Synchronization. IEEE Transactions on Computers, September,
1,175-1,185.

Selic, Bran. 2000. Distributed Software Design: Challenges and Solutions. Embedded
Systems Programming, November, 127-144.

370 Bibliography
Selic, Bran, Garth Gullekson, Paul T. Ward. 1994. Real-Time Object Oriented
Modeling. John Wiley & Sons.

Simons, A J H. 2000. “On the compositional properties of UML statechart diagrams."
Electronic Workshops in Computing: Rigorous Object-Oriented Methods 2000,
series ed. C J van Rijsbergen. British Computer Society.

Spencer, Henry, “The Ten Commandments For C Programmers” (Annotated Edition).
(http://www.lysator.liu.se/c/ten-commandments.html#henry).

Stroustrup, Bjarne. 1991. The C++ Programming Language Second Edition. AT&T
Bell Telephone Laboratories, Inc.

Sutter, Herb, GotW.ca Web site, http://www.gotw.ca/gotw/057.htm

Van Sickle, Ted. 1997. Reusable software components, object-oriented embedded
systems programming in C. Prentice Hall

WindRiver Systems, Inc. GNU Toolkit User’s Guide, 2.6, October 1995, Part#:
DOC-11091-ZD-01

WindRiver Systems Inc. VxWorks Programmer’s Guide, 5.3.1, Edition 1, 4 March
1997, Part#: DOC-12067-ZD-00

Yourdon, E. 1994. Decline and Fall of the American Programmer. Prentice Hall PTR;
November 10.

Index

Symbols
µC/OS 254, 267, 340

A
abstract class 340, 342, 344

UML notation for 354
abstract method 137, 347–348

UML notation for 354
Abstract Operating System 208
abstraction 105, 336

and LSP 34
as meta-pattern 21, 81, 120, 333, 335–

339
inheritance 32, 105
levels of 5, 15, 17, 131, 165, 328
state hierarchy 51, 184

access control 338
private 338
protected 338
public 338
See also visibility of class members

action 27–30, 41, 43, 49, 53, 55, 59, 67, 224,
253, 327

coding transitions 98–99
sequence of 38
UML notation for 356
undefined syntax of 41
See also entry/exit action
See also internal transition

action listener 240
active object 20, 190–191, 197, 248–253

as Observer 243
priority 241

active object computing 191, 315
and programming discipline 316
flexibility of 315

heuristics for 317
rules for programming 315

activity graphs 42
actor 190–191

See also active object
ad hoc approach 103, 196, 290
additive complexity 35
Adobe Acrobat Reader 362
ADT (abstract data types) 336
AECL (Atomic Energy of Canada Limited) 196
aggregate 63, 86–87
aggregation 151, 355

UML notation for 355
agile methodologies xii
Agile Modeling xii
ALLEGE() macro 222
Amber, Scott xii
and-decomposition of states 34, 159

See also orthogonal regions
angular momentum 49, 51–52

conservation of 50
ANSI C 121
application

framework 190
shutdown 255

applicationintentionally incomplete 264
architectural decay 27, 196–197

and guards 26
ARM (Advanced RISC Machines) 350

ARM7TDMI 230
See also Atmel, AT91 microcontroller

arming a timer 256
ASSERT() macro 106–107, 222
assertions 220
asynchronous event

dispatching 151
exchange 20, 198

Atmel Corporation
AT91 microcontroller family 229–230
371

372 Index
atomic
change of state 91
event processing 197

automatic code generation
See code generation, automatic

automatic contract validation
See also DBC

automatic event recycling 87, 237, 247–248,
327

automatic garbage collection
See garbage collection

automatic objects 338
automatic programming 326
automatic variables

See variables, automatic

B
background processing 283–284
bad idea 234, 247
behavior

continuous 24
inherited 17, 33
modal 6
sharing of 31
simple 24
See also behavioral reuse
See also state behavior

behavioral inheritance 16–18, 32–34, 81, 331
and inheriting state models 185
and state hierarchy 16
and state machine inheritance 167
and state patterns 18, 34, 132
and symmetry 52
as meta-pattern 17, 81, 248
tree 110

behavioral reuse 16–17, 31–33, 53, 132
and class inheritance 82, 168, 185
example of 48, 50

binary logarithm 286
binary semaphore 193
block device 342

blocking 230, 234–235, 247
as mode of operation 314
in active objects 315
in traditional mulithreading 314

Booch, Grady 32
Borland

C++ compiler 175
Delphi 6
OWL (Object Windows Library) 6

bottom-up approach 7, 45, 197
See also ad hoc approach

Brooks, Frederick x, 42, 206, 316, 336
bug

See error

C
"C+" (object-oriented programming in C) xiv,

120, 336
and polymorphism 177
and statechart refinement 177

C++ 325
exception handling 224
object model 82, 336
standard libraries 228

calculator statechart 9, 170
CallEvent 41
callMemberFn() method 182
canonical state machine

See state machine, canonical
Cargill, Thomas 224
CASE (computer-aided software engineering)

44, 211–212
cfront compiler 336
chain of responsibility

See design pattern
change manager 240
ChangeEvent 41
character device 342
choice pseudostate 40

implementation of 76, 127
UML notation for 357

ChorusOS 197

Index 373
CISC (complex instruction set computing) 349
class 337

diagram 353–355
inheritance 16, 33
UML notation for 354

classical FSM 4–5, 10, 28, 31–32, 41, 53, 55,
70, 83, 155

and entry/exit actions 76
and guards 76
and pseudostates 76
vs. HSM 105–106, 155

classical mechanics 19, 49, 330
vs. OOP 199–200

cleanup 253–255
clock device 256
clock tick 256–258, 294–295

interrupt 257
ISR 259

code generation
automatic vii, 15, 43–44, 211–212

and application framework 44
and QF 212
and RTOS 44

code-synthesizing tools
See CASE

coding statecharts
See statechart

collaboration of classes 355
comment parser FSM 57
commonalities in frameworks 266
compatibility of behavior 168
complete event 142
complete shutdown 255
complete state handler 102, 104
complete transition 142
complexity 26, 29, 32, 160, 168

additive 35
and abstraction 32
artificial 10
multiplicative 35
of hardware 332
of QP implementation 331
of state machine 103
See also simplexity

component state machine
See state machine, component

composite aggregation
UML notation for 355

composite state 31, 104–105
and quantum mechanics 49

See also quantum state
defining 96
example of 14
LSP-compliant 34
UML notation for 356

conceptual integrity xi, 206–207, 329
concurrency model 151
concurrent objects

UML notation for 357
constructor in C 337–338, 341
consumption rate 319
container state machine

See state machine, container
continuous behavior 24

and classical mechanics 49
contracts in software 220

See also DBC
controllability 198
cooperative multitasking

See multitasking, cooperative
correlated event production 321
counting semaphore

See semaphore
coupling 317
CPU utilization 215
critical section 272–273
CRITICAL_SECTION 292
cross-development 301–302

D
dangling pointers 227–228
DBC (design by contract) 106, 220–223

strategic contract example 240, 244
tactical contract example 239

deadline 40, 215, 227, 231, 317, 320
notation for 357

deadlock 194, 198, 232, 306, 314, 316

374 Index
defer operator 144
deferred event 41, 144

See also state pattern
DEFINE_THIS_FILE macro 222
degenerate state 20, 52

and symmetry 52
delete operator 225
design automation tools 43, 103, 190, 211,

318, 326, 362
QP as alternative to viii
See also CASE

design by contract
See DBC

design pattern
Chain of Responsibility 86, 108
Facade 198
Mediator 202
Observer 202, 240, 243, 245
Singleton 11, 59, 93, 155, 158, 169, 180,

258
Singleton in “C+” 177
State 65, 72–73
Template Method 137, 183
vs. state patterns 132
See also Singleton design pattern
See also state design pattern

desktop application 218
desktop metaphor 206
desktop-style programming 217–219, 225,

229, 263
destructor in C 337–338
deterministic execution 198, 231, 237, 264,

290, 295, 316
Device Mode idiom 155, 163
dialog controls 151
Dijkstra, Edsger 191, 205
dining philosophers problem

See DPP
directory structure 270
disabling

interrupts 192, 231, 296
task switching 193, 231

dispatch() method 56
implementation 108

dispatching events
See events, dispatching

distributed system 209
DOS 283–290, 314

device driver 342
See also Microsoft, DOS

Douglass, Bruce x, 32, 132, 318
downcasting

event pointer 89, 154
this pointer 72

DPP (dining philosophers problem) 191, 202,
230, 245, 306
Philosopher active object 311
QF implemenation of 306
Table active object 308
See also deadlock

Duby, Carolyn 78
dynamic binding 178, 183, 342
dynamic event allocation 237–240
dynamic memory allocation 219, 227–228
dynamic state transitions 110, 116, 164, 180

E
EC++ (Embedded C++) 258, 351

and exception handling 224
edit–compile–execute cycle 291
Eiffel 222, 330
eight-bit micros 290
electromagnetism 200, 330
electron spin 52
embedded C

See EC++
embedded Linux 217
embedded real-time system 4, 187, 190, 209,

215–218
and exception handling 224
memory management 225, 229
vs. general-purpose computer 216

enabling interrupts 296
encapsulation 191, 336

Index 375
END_CALL macro 348
END_VTABLE macro 347
energy conservation 235
ENSURE() macro 106, 222
EnterCriticalSection() 292
entry action 36–37

and identity of state 37
coding 98
implementation of 76
order of execution of 37
vs. class constructor 17, 37
vs. class initialization and finalization 17

error 218
event 26, 306–315

action paradigm 7
altering the sequence of 144
annihilation of 247
anonymous 142
bursts in production 249
changing type 156
deferring 41, 144
dispatching 99

explicit 156
failure to enqueue 244
initialization 154, 156
kinds of 40
life cycle of 27
production 321
sinks of 322
static allocated 250
synchronous 151
See also asynchronous event

event handler 59
event object 86
event parameters 27, 315
event passing viii, 53, 86, 197, 201, 216, 218,

235–237, 244, 247, 264, 286, 318, 323
event pool 237, 273–277, 322

multiple 238
See QEPool
sizing 322

event processor 62, 83, 106–118
implementation of 106

event queue 27, 249, 298–300, 319–322
ring buffer 278
See QEQueue
sizing 319–320

event-driven systems 1, 3, 12, 83, 86, 132,
139, 159, 187, 191, 197, 326

exception handling
and EC++ 224
state based 224

exception handling policy 220
exceptional condition 219, 223
exclusive access 192
executable

code 132
model xii, 43, 249, 317, 327

execution
profile 284
thread 152, 298–300

exercises, answers to 362
exit action 36–37

and identity of state 37
coding 98
implementation of 76, 98
order of execution of 37
vs. class constructor 37
vs. class destructor 17, 37
vs. class initialization and finalization 17

extended state 25
extended state machine 25
extended state variable 25, 101, 196

vs. orhtogonal components 159
extension points 190, 212

F
Facade design pattern 198
fairness 194
Feynman diagrams 200

vs. sequence diagrams 200
Feynman, Richard 200
FIFO 143
final state 30, 48

explicit 135, 255
UML notation for 356

376 Index
fine granularity 267
finite state machine

See FSM
flowchart 42, 76

vs. statechart 41
focus of control

UML notation for 357
foreground processing 283–284
fork pseudostate

See pseudostate, fork
fragmentation

lengthy processing 143
of heap 226

framework extension points 212
free() 225, 231
FSM (finite state machine) 24

and repetitions 32
Optimal 69, 83, 88
vs. HSM (hierarchical state machine) 155
See also state machine

fudge factor 320
functor 181

G
Gamma, Erich 18, 33
garbage collection 227, 236
generalization 354

arrow 345, 354
general-purpose computer

vs. embedded system 216
global namespace 258
GNU gcc

-fvtable-thunks option 175
GPS receiver x, 207–209, 242
graceful shutdown 255
graphical notation 353
guaranteed cleanup 92, 148

and class destructor 36
and exit action 36

guaranteed event delivery 210, 245
guaranteed initialization 92, 148

and class constructor 36
and entry action 36

guard 26, 41, 43, 48, 50, 76, 102–104, 154,
159, 183–185, 193, 212, 311, 327

and architectural decay 26
implementation of 76, 99
sequence of evaluation 43
UML notation for 40, 356

GUI (graphical user interface) 3

H
hard real-time 209
Harel statecharts 24
Harel, David x, 4, 24, 41–42
has a (has-a-component) relationship 248
heap

fixed-block-size 237
infinite 228

heap problems 225–228
block allocation overheads 226
fragmentation 226, 228
heap as a shared resource 226
massively oversizing heap 226
nondeterminism 226
priority inversion 226
sharing 226

Heisenberg uncertainty principle 51
Hejlsberg, Anders xi–xii
heuristics for active object–based systems 318
Hewitt, Carl 191
hierarchical states 4, 31–32

semantics of 5
symmetries 32

high-water mark 279
history

clearing 164
See also pseudostate

history mechanism 39, 127
Horrocks, Ian 6, 78
host machine 301
housekeeping code vii, 15, 43, 211–212
HSM (hierarchical state machine) 31–32, 155

and opportunity for reuse 32
malformed 126
See also QHSM class

Index 377
See also state charts
See also state machines

hydrogen atom 49, 52

I
IAR

VisualState 44
I-Logix

OXF (Object Execution Framework) 190
Rhapsody 44, 190, 208
Statemate 44, 331

incomplete prototypes 317
inconsistent configuration 196
inheritance

aggregate 87
and class instantiation 37
and programming-by-difference 17
as cornerstone of OOP 20, 34, 81
as meta-pattern 17, 81, 350
benefits of 33
exact 16
for classes 16, 33

UML notation for 353
for states

See behavioral inheritance
in C 120, 178, 335, 339

example of C 340
multiple (MI) 75, 89, 181–182
of entire state models 85, 92, 138, 168–

169, 186
of state machines 168
of statecharts 167
overhead of 349
state transition 101, 111
UML notation for 354

initial pseudostate
See pseudostate, initial

initial transition 10, 30, 56, 93, 98–99, 143,
154, 202, 252, 261, 288, 310

and Init() method 56, 59, 83
coding of 98
hard-coding of 63
implementation of 89

reuse of 46
topmost 94
UML notation for 356
vs. class constructor 95
See also QHsm::init() method

initialization 253–255
of an HSM 99

initialization of an event
See event, initialization

installation 361–362
instantiation 154
Intel

8089A 297
x86 processor 266, 273, 296, 349, 361

intermediate
bosons 20
vector bosons 199

internal transition 39, 102, 134, 145, 149, 310
coding 98
UML notation for 356
vs. self-transition 39

interrupt latency 231, 273
and critical section 273

interrupt service routine (ISR) 227, 283, 342
interrupts, enabling 296
intertask synchronization 207
INVARIANT() macro 106, 222
IRQ 297, 342
is a (is-a-kind-of) relationship 17, 33, 248, 354

example of (QActive is a QHsm) 248
is in (is-in-a-state) relationship 17, 31, 33, 52
IS_IN() operator 159–160
ISR

See interrupt service routine

J
Java 227, 331

and "C+" 340
AWT (Abstract Windows Toolkit) 6
event model 240
native interface 336
preventing subclassing with final keyword

105

378 Index
jitter, notation for 357
join pseudostate

See pseudostate, join
junction pseudostate 40

implementation of 76
See also pseudostate, junction

L
Labrosse, Jean 340
Latch state pattern 159
LCA (least common ancestor) 38, 92, 110
LeaveCriticalSection() 292
legacy systems 198
Leveson, Nancy 195
lexical intelligence xii
licensing xv
LIFO 143, 274
Linux 217
look and feel 133

consistency 4, 133–134, 182
low-water mark 275
LSP (Liskov Substitution Principle) 34, 168,

185, 330
and compatibility of behavior 168
and quantum mechanics 49, 52
and reactive classses 183
and state machine inheritance 183
for classes 34
for states 34, 207

M
malloc() 219, 225, 231
manual coding vii
many-to-many interactions 202
map file 229
Mars Pathfinder mission 232
master–slave 158
Mathworks Stateflow 44
me pointer 337
Mealy and Moore state machines 43
Mealy automaton 28
Mediator 240

Mediator design pattern 202
Mellor, Steve 32
memory leak 219, 227, 236, 264, 327
memory partition 237, 273
memory pool 237, 273, 298
memory, conserving 322
message mailbox 194, 207, 250, 298, 316, 340
message pump 249
message queue 250, 277, 298, 340
meta-pattern, abstract 17
metaphor xi, 206
Meyer, Bertrand 220, 223
MI (multiple inheritance) 75, 181, 361

and pointers to members 75
compatible HSM 181

MicroC/OS-II
See µC/OS

microkernel architecture 197
Microsoft

ActiveX 211
C/C++ compiler 175
Developer Studio 266
Document/View architecture 211
DOS and QF 265
MFC (Microsoft Foundation Classes) 6,

12, 211
Visual Basic Calculator 6
Visual C++ xiv, 211, 266
See Win32
See Windows

Microsoft Foundation Classes
See Microsoft, MFC

minimal communication 317
modeling

at the code level xii
early stages of 247

Moore automation 28, 30, 43, 53
and entry/exit actions 36, 89
See also Mealy automation

Moore, Gordon E. 209
Moore’s Law 208–209
multicasting events 245–247
multitasking, cooperative 290

Index 379
multithreading 208
and deadlock 194
and fairness 194
and nondeterminism 194
and race conditions 192
and starvation 194
and system utilization 194
object based 208

Murphy, Niall 217
mutex 226, 231–232, 237, 251, 314, 324
mutual exclusion 29, 193, 230, 233, 245–248,

250–251, 264, 291, 323, 331
semaphore

See mutex

N
namespace, global 258
naming convention 78
NASSERT macro 222
nested states 16, 31–34, 38, 135, 145, 168

See also hierarchical states
nested switch statement 57–60
network processor 210
neutrino 201
new operator 219, 225
nondeterminism 194, 215, 226–227, 284, 295,

323

O
object based multithreading 208
object class 343

ObjectAbstract() method 345
ObjectCtor_() method 345
ObjectIS_FIND_OF()macro 345
ObjectXtor_() method 345
vptr__ attribute 345

object composition 150
object oriented analogy ix, 16–19, 82, 94–95,

336
ObjecTime toolset 326
observability 198
observables 51

Observer design pattern
See design pattern

observers 240
OMG UML specification

See UML
onAssert__() function 222
one-shot timeout 256
one-to-many interactions 202
OnTime

RTKernel-32 and QF 266
OO programming languages 330
OOP

costs of 349–350
vs. classical physics 199

opaque shell 198
open architecture 209
Optimal FSM

See FSM, Optimal
or-decomposition of states 34
orthogonal component

See orthogonal region
orthogonal regions 34, 36, 150, 159

and concurrency 36
and order of event dispatching 36
and state patterns 132
UML notation for 35, 357

orthogonality
approximate 35

OS_EVENT 340
OSF/Motif 336
overhead

of adding states 27
of behavioral inheritance meta-pattern

129, 176
of C++ exception handling 224
of heap 226, 229
of OOP 349–350
of priority inheritance 231
of RTOS abstraction layers 208
of UML statecharts 82
OXF (object execution framework) 208
See also I-Logix, Rhapsody

OXF (object execution framework) 190
overhead 208

380 Index
P
package scope

header file 271–272
parallel computing 210–211
parent–child 158
Parnas family 266–267
Parnas, David 266, 350
parsing numerical expressions 45
passing events 235–237
PATH environment variable 361
periodic timeout 256
platform dependence 267
pointer-to-member function 62, 76, 169

as an aggregate 174
syntax 172

pointer-to-virtual-member function 169, 173–
176

Polling state pattern
See state pattern, polling

polymorphic call 348
polymorphic event triggering 41
polymorphic state 177
polymorphism 168, 335, 341–348

as meta-pattern 17
realized in hardware 342

port.h 271
preemptive 230, 295
preemptive model 28
preemptive priority-based scheduler 230, 246,

295
priority 230
priority based kernel 295
priority ceiling 232–233

mutex 232
protocol 232

priority inheritance 232–233
mutex 232

priority inversion 231, 233, 237, 292
priority numbering in QF 251
priority of active object 241, 251
production rate 319
programmable interrupt controller 297

programming-by-difference 4, 17, 92, 134,
173

and reuse of behavior 16
programming-in-the-large 19
prototype, intentionally incomplete 327
prototypes

incomplete 317
pseudocode

UML notation for 354
pseudostate 39–40

deep-history 40, 127, 160
fork 40
history 40
initial 40, 92–93
join 40
junction 40
shallow-history 40
UML notation for 357
See also choice pseudostate

public scope header file 269–271
publish-subscribe 201

mediator 240
model 240–245
observers 240

Q
Q_DEFINE_CALL_MEMBER_FN() 182
Q_EMPTY_SIG signal 91
Q_ENTRY_SIG signal 14, 90–91, 95, 98, 107,

116
Q_EXIT_SIG signal 90
Q_INIT() macro 84, 90, 93, 98, 127
Q_INIT_SIG signal 90, 95, 98, 104, 107, 116
Q_NEW() macro 240, 277, 308–309
Q_STATE_CAST() macro 107
Q_TRAN() macro 84, 91, 99, 109, 127, 161,

180
transition sequence 91

Q_TRAN_DYN() macro 84, 109, 161, 181
Q_USER_SIG signal 90, 307
QActive class 202, 204, 249, 268, 287

enqueue() method 288
myEqueue attribute 268

Index 381
myThread attribute 268
postFIFO() method 144, 261, 288
postLIFO() method 144
postLILO() method 288
QActive() constructor 261
run() method 246, 252, 288
start() method 229, 242, 250–251, 254,

261, 288, 294
stop() method 261, 288

qassert.h header file 107, 221
QEPool class 237, 274–275, 277, 298

data structure 274
get() method 238, 275–276
init() method 238, 275
myEvtSize attribute 274
myFree attribute 274
myNfree attribute 275
myNmin attribute 275, 322
myNtot attribute 274
put() method 238, 275–276

QEQueue class 277, 282
data structure 278
declaration 277
get() method 280
init() method 279
myEnd attribute 278
myFrontEvt attribute 278, 282
myHead attribute 278
myNmax attribute 279, 319–320
myNtot attribute 279
myNused attribute 279
myStart attribute 278
myTail attribute 278
putFIFO() method 278, 281
putLIFO() method 278, 282

QEvent class 12, 84, 86–87, 202, 204, 308
poolId attribute 239, 248
useNum attribute 244, 246, 248

QF (Quantum Framework) 190
and Design by Contract 223
API 258–263
application, incomplete 247
as base for automatic code generation 212

as software bus 210
change manager 240
design of 215
error and exception handling policy 220
event queues 250
integration with I/O 323
memory management policy 230
time management 217, 220, 255–258, 294
vs. RTOS 208

QF class 258
add() method 242
background() method 259, 285
cleanup() method 259
create() method 239–240, 259, 277
getVersion() method 259
init() method 56, 242, 253, 259, 276
poolInit() method 239, 253, 259
propagate() method 246
publish() method 241, 245, 259, 309
subscribe() method 241–243, 259, 309
tick() method 259, 300, 313
unsubscribe() method 241, 243, 259

QF_EQUEUE() macro 268
QF_EQUEUE_INIT() macro 279
QF_EQUEUE_ONEMPTY() macro 280, 287
QF_EQUEUE_SIGNAL() macro 281–282, 287,

292
QF_EQUEUE_WAIT() macro 280, 287, 292
QF_ISR_PROTECT() macro 292
QF_ISR_UNPROTECT() macro 292
QF_PROTECT() macro 273
qf_rtk32.h 299
QF_THREAD() macro 268
QF_UNPROTECT() macro 273
qfpkg.h 271
QFsm class 88, 153

vs. QHsm class 156
QFsmState 88
QHsm class 11, 83, 85, 202, 248

constructor 93
dispatch() method 99, 108, 163, 252
getState() method 163
in C 337

382 Index
in "C+" 121–122
init() method 99–100, 107, 252
isIn() method 109, 159
mySource attribute 111
myState attribute 84, 111, 163
subclassing 95
top() method 92
tran() method 111–112, 181
tranSetup() method 118
tranStat() method 117, 180
Tst statechart 95
virtual destructor 85

QNX Neutrino 197
QP (Quantum Programming) x, 4, 207, 326

and behavioral inheritance 81
and internal structure of classes 19
Language 330–331
mission of viii
Web site 333

QPseudoState 88
QSignal (quantum signal) type 87
QState (quantum state) 84, 88–89

type 84, 88
upcasting to 99

QTimer class 204, 256, 262, 311
disarm() method 263
fireEvery() method 256, 262
fireIn() method 256, 262, 312
rearm() method 263

quantum analogy x, 19–20, 49, 199–201, 207
quantum calculator 44–48

design of 44
extended version 168
implementation of 10–16

quantum field theory 200, 207, 235

Quantum Framework
See QF

quantum leap 20, 29, 207
quantum mechanics ix, 19
quantum number 52, 78
quantum programming

See QP

quantum state 20, 51–52, 207
quantum vacuum 202, 236

R
race condition 192, 195–196, 290
RAD (Rapid Application Development) 6
rapid

model building 327
prototyping 328

Rational Corp. Development Studio 44
reactive base class 173, 177, 180, 183
reactive class 79, 167–168, 183, 185
reactive component 155, 159
reactive system 4, 6, 8, 16, 20, 23, 52, 54, 73,

132–133, 144, 177, 187, 197, 207, 331
ready list 285
realloc() 231
real-time

framework 43
multitasking kernel 295
operating system

See RTOS
See also hard real-time
See also soft real-time

reentrancy 226
refactoring 18

of state models 18–19
regular transition 99
reinterpret_cast 107
reminder 138–143
Reminder state pattern 143, 158, 290

and state-based exception handling 224
reparenting 185
REQUIRE() macro 106, 222
resetting a state machine 135
resource allocation 192
resource sharing

avoiding 317
responsiveness 317
reuse

and class inheritance 336, 341
and design pattern 132, 159

Index 383
and orthogonal region 150
design pattern 19
essence of 17
high cost of 331
in application frameworks 190
in class libraries 190
in embedded systems 331
in frameworks 190
in HSM 32
of behavior

See behavioral reuse
of code 34, 72, 182, 185
of legacy code 256
See also programming-by-difference

reverse inheritance 185
ring buffer

and event queue 278
RISC 350
role in collaboration 355
ROOM (real-time object-oriented modeling) x,

103, 149, 164, 191, 317, 326
ROOMchart 24, 77
virtual machine 149, 190

RTC (run to completion) 28–29, 143, 151,
234, 249

RTKAllocMemPool() 298
RTKCreateMailbox() 299
RTKCreateThread() 299
RTKDisableInterrupts() 296
RTKDisableIRQ() 297
RTKEnableInterrupts() 296
RTKEnableIRQ() 297
RTKernel-32 266, 295–302, 314
RTKernelInit() 300
RTKFreeBuffer() 298
RTKGetBuffer() 298
RTKMailbox() 299
RTKPutCond() 300
RTKPutFrontCond() 300
RTKTaskHandle 299
RTKTerminateTask() 300
RTOS (real-time operating system) 202, 207–

208, 331

abstraction layer 208
and conventional multithreading 208

RTOS-32
evaluation kit 361
manual 362

RTTARGET environment variable 361
RTTarget-32 289
RTTI (run-time type identification) 345
Rumbaugh, James 150
run to completion

See RTC
rush-to-code syndrome 327

S
scalability 198
scheduler

preemptive priority-based 230, 246, 295
scheduling algorithm 207
self-transition 39

vs. internal transition 39
Selic, Bran x, 317–318
semaphore 193, 231
sequence diagram 306, 317, 357

vs Feynman diagram 200
sequential multicast 246

See also multicasting events
sequential programming 194
serial port 234
SetEvent()macro 292
shallow history 160

pseudostate 40
shared behavior 31
shared data 152
shared memory 283
shared resources 203
shutdown, graceful 255
signal 306–315

granularity 103–104
latencies 332
propagation delays 200

SignalEvent 40, 84

384 Index
signals
consolidation of 46
enumerating 95
uniqueness of 307

simple behavior 24
simple state 31, 104
simplexity xi
Simula 67 330
single inheritance 340
Singleton 311
Singleton design pattern 59, 158, 180, 258

example in “C+” 177
example in C++ 169

sinks of events 322
sizing event pools 322
sizing event queues 319–320
sleep mode 255
Sleep() 295
soft real-time 209

requirements 227
systems 247

software bus 208, 210, 332
source code 361
source state 38
spatial intelligence xii
specialization 354
spike solution 327
Standard Template Library 228
starvation 194
state

based exception handling 224
behavior 20, 24, 34, 49, 53, 72, 149–150,

158, 167, 182
combinatorial explosion 35
configuration 38
design pattern 65
explosion 35
identity of 37
in quantum mechanics 49
most recent configuration 160
mutual consistency in 245
or-decomposition 34
removing 185
simple 31

target 38–39, 91–92, 99, 110, 112, 114–
116, 184, 356

UML notation for 356
variable 73–74
See also composite state
See also degenerate state
See also final state
See also hierarchial state
See also nested state

state design pattern 65–69
state handler

defining 96–99
incomplete 102
malformed 128
signature of 89

state handler method 12, 59, 72
defining 96
example of 14

state hierarchy 31, 77–78
abstract 31
and quantum mechanics 49
circular 128
LSP-compliant 34

state machine 154
as remedy to highly conditional code 23
canonical 134
component 151
container 150
extended 25
interface 56–57
resetting 135
terminating 48, 135, 148, 254–255, 261

state models 185
malformed 104

state pattern 18, 132, 165
and behavioral inheritance 18, 34, 132
and orthogonal regions 18, 132
deferred event 144–149
Orthogonal Component 150–160
polling
Transition to History 164
Ultimate Hook 137

and exception handling 224
See Reminder state pattern

Index 385
state table 60–64
optimal FSM 75

state transition 5, 27, 91–92, 101, 112
and RTC step 29
and sequence of actions

See transition execution sequence
diagram 5, 30, 32

See also statechart diagram
UML notation for 356

in Mealy/Moore automata 28
reuse of 10, 31
semantics of 38
UML notation for 356
uninterruptable 21
vs. quantum leap 21

state variable 25, 57, 59, 64, 72, 75, 79, 95,
101, 196

vs. orhtogonal components 159
statechart vii, 4

and active objects 197, 248
and class inheritance 167
and even queue 249
as a type of design 326
automatic code synthesis 43
coding of 10, 98
constructive nature of 212
diagram 5, 9, 30, 32, 39, 45, 47–49, 98,

170, 204, 356–357
essence of 30
example in C 124
executable model of 43
overhead of UML 82
refactoring of 19
refined 170
refining through inheritance 168, 178, 183
semantics vs. notation 41
UML notation for 356–357
vs. flowchart 41
See also UML, statechart

static binding 178
static initializer 338
static objects 338
static transitions 110

strategic contract 244
strict inheritance 184

in state models 184
struct in C++ 86
subclass 339
subclassing

Calc1 169, 179
framework classes 211
preventing 105
QActive 202
QEvent 84, 240, 308
QHsm 95, 102, 128
StateTable 63

subevent 41
subscriber list 242

lookup table 254
substate 4–5, 10, 16–17, 31, 33–34, 37–40,

46–47, 50, 52–53, 90, 98, 104, 108, 127–
128, 134, 137–138, 142, 160–161, 184–
185, 223, 356

direct 31
See also transitive substate

subtyping 184
in state models 184

super pointer 340
superclass 339, 346
superloop 207
superstate 31

designing the 99
symmetry 207

and state hierarchy 49
synchronizing

access 192
orthogonal regions 35

synchronous event dispatching 151
system utilization 194
SystemC 332

T
target machine 301
target state

See state, target

386 Index
task-level response 284, 295
Telelogic ObjectGeode 44
Template Method design pattern 137, 183–

184
testability 198
test-and-set operations 193
testing 197

and executable models xi
Therac-25 195–197
“Thin wire” style of communication 198
this pointer 337
THIS_FILE__ 222
thread of execution 251–253
thread routine 252
thunk technique 175
time management

See QF
timed blocking 255, 277, 298
TimeEvent 40
timeliness

of event delivery 245
requirements 216

timer 256
arming 256
disarming 256
phasing of periodic 256
rearming 256

timing diagrams 357–358
top state 31, 92
Tran class 58, 85, 116
tran() method 111
Tran_ class in C 122
tranSetup() method 118–120
transition

action functions 63, 78
coding initial 98
coding regular 99
execution sequence 37–39, 91

in UML 38
removing 185
sequence of QP 92
to history 160–164

UML notation for 356
See also action
See also initial transition
See internal transition

tranStat() method 116
trigger (triggerig event) 27
TRIGGER() macro 107
typical clock rates 256

U
Ultimate Hook 4, 6, 133–137

state pattern 137
state-based exception handling 224

UML (Unified Modeling Language) 15, 39
and well-formedness rules 104
meta-model 77
noncompliant statecharts 105
notation

abstract class 354
abstract method 354
aggregation 355
choice point pseudostate 357
class 354
concurrent objects 357
final state 356
focus of control 357
history pseudostate 357
inheritance 354
initial transition 356
internal transition 356
orthogonal regions 357
pseudocode 354
state 356
transition 356

specification x, 24, 39, 41, 92, 104, 362
See Appendix B

state machine meta-model 77
statechart 24, 30–44

uncertainty principle 200, 235
unfixable 196

Index 387
V
variabilities

in frameworks 266
See also variables, automatic

variables
automatic 250, 322

vcall thunk 174
VCALL() macro 348
VHOOK() macro 347
virtual bosons 201
virtual destructor 345
virtual memory 227
virtual particle 200, 235
virtual photon 200, 235
virtual pointer 177, 343
virtual state handler 75, 171
virtual table 175, 177, 343
visibility of class members 354
Visio™ stencil 362
Visual Basic Calculator 196
visual modeling language 328
visual programming vii, 41
visual tools 211, 326
visualSTATE engine 190
VMETHOD() macro 346
VPTR (virtual pointer) 121, 343
VPTR() macro 178, 348
VTABLE 121–122, 125, 178, 343
VTABLE() macro 346
VxWorks

See WindRiver, VxWorks

W
WaitForSingleObject() 292
watchdog timer 256
well formedness 331
Win32 290–295, 314

API 12, 193
console application 295

Windows xiv, 83, 132, 136
9x 292
and QF 266
as reactive system 12
CE 217
NT 292

WindRiver Systems 252
BetterState 44
VxWorks 230, 232, 252

WinMain() 12, 56, 86, 136, 295
WM_COMMAND 12, 104
WM_TIMER 295
worst-case pool utilization 275
worst-case queue utilization 279

X
XP (eXtreme Programming) xii, 57, 206, 327,

329

Z
Zeeman effect 49
zero overhead principle 82

What’s on the CD?
The companion CD-ROM contains all the source code and executable images mentioned
in the book, including several ports of the Quantum Framework (QF). The disc also
includes answers to the exercises scattered throughout the book, the Evaluation Version of
On Time RTOS-32 v4.0, Visio™ stencils used to create the diagrams in this book, and sev-
eral references in Adobe Portable Document Format (PDF).1

The CD-ROM is designed for maximum usefulness, even without installing any of it
on your hard drive. In particular, you can browse the source code, execute examples, and
read PDF documents directly from the CD.

The disc comes with an HTML-based index page, index.htm, in its root directory. It
is automatically activated if the CD autoinsert notification is enabled on your system.
You need a Web browser (e.g., Microsoft Internet Explorer or Netscape Navigator) to
view the index.

For more information on the source code structure, installation, answers to exercises,
or other CD resources, see Appendix C, beginning on page 359.

1. A copy of Adobe Acrobat Reader™ is included on the CD-ROM for your convenience.

	Practical Statecharts in C/C++
	Table of Contents
	Preface
	Part I
	1. Whirlwind Tour of Quantum Programming
	1.1 The Ultimate Hook — Anatomy of a GUI Application
	1.2 A Better Way of Programming — A Calculator That Works
	1.2.1 Shortcomings of the Traditional Event–Action Paradigm
	1.2.2 Calculator Statechart
	1.2.3 Integration with Windows
	1.2.4 State Handler Methods

	1.3 Object-Oriented Analogy
	1.3.1 State Hierarchy and Class Taxonomy
	1.3.2 Entering/Exiting States and Instantiating/Finalizing Classes
	1.3.3 Programming-by-Difference
	1.3.4 Behavioral Inheritance as a Fundamental Meta-Pattern
	1.3.5 State Patterns
	1.3.6 Refactoring State Models
	1.3.7 Beyond Object-Oriented Programming

	1.4 Quantum Analogy
	1.5 Summary

	2. A Crash Course in Statecharts
	2.1 The Essence of Finite State Machines
	2.1.1 States
	2.1.2 Extended States
	2.1.3 Guards
	2.1.4 Events
	2.1.5 Actions and Transitions
	2.1.6 Mealy and Moore Automata
	2.1.7 Execution Model — Run-to-Completion Step
	2.1.8 State Transition Diagrams
	Figure 2.1 State transition diagram representing the computer keyboard FSM

	2.2 The Essence of UML Statecharts
	2.2.1 Hierarchical States
	Figure 2.2 (a) Simple statechart with state s11 nested inside state s1; (b) state model of a simp...

	2.2.2 Behavioral Inheritance
	2.2.3 Orthogonal Regions
	2.2.4 Entry and Exit Actions
	2.2.5 Transition Execution Sequence
	2.2.6 Internal Transitions
	2.2.7 Pseudostates
	2.2.8 Refined Event Handling
	2.2.9 Semantics versus Notation
	2.2.10 Statecharts versus Flowcharts
	2.2.11 Statecharts and Automatic Code Synthesis

	2.3 Examples of State Models
	2.3.1 Quantum Calculator
	2.3.2 Hydrogen Atom

	2.4 Summary

	3. Standard State Machine Implementations
	3.1 State Machine Interface
	3.2 Nested switch Statement
	3.3 State Table
	3.4 State Design Pattern
	3.5 Optimal FSM Implementation
	3.6 State Machines and C++ Exception Handling
	3.7 Role of Pointer-to-Member Functions
	3.8 Implementing Guards, Junctions, and Choice Points
	3.9 Implementing Entry and Exit Actions
	3.10 Dealing with State Hierarchy
	3.11 Summary

	4. Implementing Behavioral Inheritance
	4.1 Structure
	4.1.1 Events
	4.1.2 States
	4.1.3 Entry/Exit Actions and Initial Transitions
	4.1.4 State Transitions
	4.1.5 The top State and the initial Pseudostate

	4.2 An Annotated Example
	4.2.1 Enumerating Signals and Subclassing QHsm
	4.2.2 Defining State Handler Methods
	4.2.3 Initialization and Dispatching Events
	4.2.4 Test Run

	4.3 Heuristics and Idioms
	4.3.1 Structuring State Machine Code
	4.3.2 Choosing the Right Signal Granularity
	4.3.3 UML-Compliant HSMs

	4.4 The Event Processor
	4.4.1 Initializing the State Machine: The init() Method
	4.4.2 Dispatching Events: The dispatch() Method
	4.4.3 Static and Dynamic State Transitions: Macros Q_TRAN() and Q_TRAN_DYN()
	4.4.4 Dynamic State Transition: The tran() Method
	4.4.5 Static State Transition: The tranStat() Method and the Tran Class
	4.4.6 Initializing the QTran Object: The tranSetup() Method

	4.5 C Implementation
	4.5.1 QHsm Class in “C+”
	4.5.2 QHsm Constructor and Destructor
	4.5.3 State Handler Methods and Pointer-to-Member Functions
	4.5.4 QHsm Methods
	4.5.5 Statechart Example in C

	4.6 Caveats
	4.7 Summary

	5. State Patterns
	5.1 Ultimate Hook
	5.1.1 Intent
	5.1.2 Problem
	5.1.3 Solution
	5.1.4 Sample Code
	5.1.5 Consequences

	5.2 Reminder
	5.2.1 Intent
	5.2.2 Problem
	5.2.3 Solution
	5.2.4 Sample Code
	5.2.5 Consequences

	5.3 Deferred Event
	5.3.1 Intent
	5.3.2 Problem
	5.3.3 Solution
	5.3.4 Sample Code
	5.3.5 Consequences

	5.4 Orthogonal Component
	5.4.1 Intent
	5.4.2 Problem
	5.4.3 Solution
	5.4.4 Sample Code
	5.4.5 Consequences

	5.5 Transition to History
	5.5.1 Intent
	5.5.2 Problem
	5.5.3 Solution
	5.5.4 Sample Code
	5.5.5 Consequences

	5.6 Summary

	6. Inheriting State Models
	6.1 Statechart Refinement Example in C++
	6.2 Statechart Refinement Example in C
	6.2.1 Preparing a “C+” State Machine for Polymorphism
	6.2.2 Inheriting and Refining the “C+” State Machine

	6.3 Caveats
	6.3.1 Static versus Dynamic State Transitions
	6.3.2 Multiple Inheritance
	6.3.3 Heuristics for Inheriting and Refining Statecharts
	Template Method
	Subtyping
	Strict Inheritance
	General Refinement

	6.4 Summary

	Part II
	7. Introducing the Quantum Framework
	7.1 Conventional Approach to Multithreading
	7.1.1 Dining Philosophers — Conventional Approach
	7.1.2 Therac-25 Story

	7.2 Computing Model of the QF
	7.2.1 Active Object–Based Multithreading
	7.2.2 Quantum Analogy
	7.2.3 Publish–Subscribe Event Delivery
	7.2.4 General Structure
	7.2.5 Dining Philosophers Revisited

	7.3 Roles of the QF
	7.3.1 Source of Conceptual Integrity
	7.3.2 RTOS Abstraction Layer
	7.3.3 Software Bus
	7.3.4 Platform for Highly Parallel Computing
	7.3.5 Basis for Automatic Code Generation

	7.4 Summary

	8. Design of the Quantum Framework
	8.1 Embedded Real-Time Systems
	8.2 Handling Errors and Exceptional Conditions
	8.2.1 Design by Contract
	8.2.2 State-Based Handling of Exceptional Conditions

	8.3 Memory Management
	8.3.1 A Heap of Problems
	8.3.2 Memory Management in the QF

	8.4 Mutual Exclusion and Blocking
	8.4.1 Perils of Mutual Exclusion
	8.4.2 Blocking in Active Object–Based Systems

	8.5 Passing Events
	8.5.1 Dynamic Event Allocation
	8.5.2 Publish–Subscribe Model
	8.5.3 Multicasting Events
	8.5.4 Automatic Event Recycling

	8.6 Active Objects
	8.6.1 Internal State Machine
	8.6.2 Event Queue
	8.6.3 Thread of Execution

	8.7 Initialization and Cleanup
	8.7.1 Initializing the Framework
	8.7.2 Starting the QF Application
	8.7.3 Gracefully Terminating the QF Application

	8.8 Time Management
	8.8.1 QTimer Class
	8.8.2 Clock Tick, QF::tick() Method

	8.9 QF API Quick Reference
	8.9.1 QF Interface
	8.9.2 QActive Interface
	8.9.3 QTimer Interface

	8.10 Summary

	9. Implementations of the Quantum Framework
	9.1 The QF as a Parnas Family
	9.2 Code Organization
	9.2.1 Directory Structure
	9.2.2 Public Scope Header File
	9.2.3 Package Scope Header File

	9.3 Common Elements
	9.3.1 Critical Section
	9.3.2 Event Pool
	9.3.3 Event Queue

	9.4 DOS: The QF without a Multitasking Kernel
	9.4.1 Foreground/Background Processing
	9.4.2 Foreground/Background with the QF
	9.4.3 DOS-Specific Code
	9.4.4 Benefits of the QF in a Foreground/Background System

	9.5 Win32: The QF on the Desktop
	9.5.1 Critical Section, Event Queue, and Execution Thread
	9.5.2 Clock Tick

	9.6 RTKernel�32: The QF with a Preemptive Priority-Based Kernel
	9.6.1 Critical Section and Event Pool
	9.6.2 Event Queue and Execution Thread
	9.6.3 RTKernel�32 Initialization and Clock Tick
	9.6.4 Cross-Development with RTKernel�32

	9.7 Summary

	10. Sample Quantum Framework Application
	10.1 Generating a QF Application
	10.1.1 Signals and Events
	10.1.2 Table Active Object
	10.1.3 Philosopher Active Object
	10.1.4 Deploying the DPP
	10.1.5 Notes

	10.2 Rules for Developing QF Applications
	10.3 Heuristics for Developing QF Applications
	10.4 Sizing Event Queues and Event Pools
	10.4.1 Event Queues
	10.4.2 Event Pools

	10.5 System Integration
	10.6 Summary

	11. Conclusion
	11.1 Key Elements of QP
	11.1.1 A Type of Design, Not a Tool
	11.1.2 A Modeling Aid
	11.1.3 A Learning Aid
	11.1.4 A Useful Metaphor

	11.2 Propositions of QP
	11.2.1 Quantum Programming Language
	11.2.2 RTOS of the Future
	11.2.3 Hardware/Software Codesign

	11.3 An Invitation

	A. “C+” — Object-Oriented Programming in C
	A.1 Abstraction
	A.2 Inheritance
	A.3 Polymorphism
	A.4 Costs and Overheads
	A.5 Summary

	B. Guide to Notation
	B.1 Class Diagrams
	B.2 Statechart Diagrams
	B.3 Sequence Diagrams
	B.4 Timing Diagrams

	C. CD-ROM
	C.1 Source Code Structure
	C.2 Installation
	C.2.1 Source Code
	C.2.2 On Time RTOS-32 Evaluation Kit
	C.2.3 Adobe Acrobat Reader

	C.3 Answers to the Exercises
	C.4 Resources

	Bibliography
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	What’s on the CD?

