
i

Application Note:
Event-Driven
Arduino Programming
with QP™ and QM™

Document Revision R
February 2020

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Table of Contents

1 Introduction.. 1
1.1 About Arduino.. 1
1.2 Event-Driven Programming with Arduino...2
1.3 QP™ Real-Time Embedded Frameworks..3
1.4 QM™ Graphical Modeling Tool..5

2 Getting Started... 6
2.1 Software Installation... 7
2.2 Modeling and Generating Code...10
2.3 Building the Examples... 10
2.4 The Dining Philosophers Problem Example...13
2.5 The PELICAN Crossing Example (qpn_avr Library)..14

3 The Structure of an Arduino Sketch for QP-nano™..15
3.1 Include files.. 17
3.2 Events.. 17
3.3 Active Object declarations.. 17
3.4 Board Support Package... 18
3.5 Interrupts.. 18
3.6 QP-nano Callback Functions... 19
3.7 The Assertion Handler... 19
3.8 Define the Active Objects (Generate the State Machine Code)...19

4 The Structure of an Arduino Sketch for QP/C++™ (qpcpp_sam Library)...20
4.1 Include files.. 21
4.2 Miscellaneous Declarations...21
4.3 Initialization.. 21
4.4 Starting Active Objects... 21
4.5 Transferring Control to the QP/C++ Framework..21

5 Working with State Machines..22

6 Related Documents and References..24

7 Contact Information... 25

i

Legal Disclaimers

Information in this document is believed to be accurate and reliable. However, Quantum Leaps does not give any
representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have
no liability for the consequences of use of such information.

Quantum Leaps reserves the right to make changes to information published in this document, including without limitation
specifications and product descriptions, at any time and without notice. This document supersedes and replaces all
information supplied prior to the publication hereof.

All designated trademarks are the property of their respective owners.

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

1 Introduction
This document describes how to apply the event-driven programming paradigm with modern state
machines to develop software for Arduino™ graphically. Specifically, you will learn how to build
responsive, robust, and truly concurrent Arduino programs with the open source QP™ real-time
embedded frameworks, which are like modern real-time operating systems (RTOSes) specifically
designed for executing event-driven, encapsulated state machines (Active Objects).

You will also see how to take Arduino programming to the next level by using the free graphical QM™
modeling tool to draw state machine diagrams graphically and to generate Arduino code automatically
from these diagrams. The QM™ modeling tool together with the build script provided in the accompanying
code to this Application Note allow you to build and upload the Arduino sketches entirely from the QM
tool.

1.1 About Arduino

Arduino (see www.arduino.cc) is an open-source
electronics prototyping platform, designed to make
digital electronics more accessible to non-specialists in
multidisciplinary projects. The hardware consists of a
simple Arduino printed circuit board and standardized
pin-headers for extensibility. The Arduino microcontroller
is programmed using the C++ and C languages (with
some simplifications, modifications, and Arduino-specific
libraries), and a Java-based Arduino IDE (integrated
development environment), called Processing, that runs
on a desktop computer (Windows, Linux, or MacOS).

Arduino boards can be purchased preassembled at
relatively low cost ($20-$50). Alternatively, hardware
design information is freely available for those who
would like to assemble an Arduino board by themselves.

Arduino microcontroller boards are extensible by means
of Arduino “shields”, which are printed circuit boards that
sit on top of an Arduino microcontroller board, and plug
into the standardized pin-headers (see Figure 1). Many
such Arduino shields are available for connectivity (USB,
CAN, Ethernet, wireless, etc.), GPS, motor control,
robotics, and many other functions. A steadily growing
list of Arduino shields is maintained at shieldlist.org.

NOTE: This document assumes that you have a basic familiarity with the Arduino environment and
you know how to write and run simple programs for Arduino.

1 of 25

Figure 1: A stack of Arduino™ shields

http://shieldlist.org/
http://www.arduino.cc/
http://www.state-machine.com/qm/
http://www.state-machine.com/qm/
http://www.state-machine.com/doc/concepts.html#Active
https://www.state-machine.com/products/#QP
https://www.state-machine.com/products/#QP

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

1.2 Event-Driven Programming with Arduino

Traditionally, Arduino programs are written in a sequential manner. Whenever an Arduino program
needs to synchronize with some external event, such as a button press, arrival of a character through the
serial port, or a time delay, it explicitly waits in-line for the occurrence of the event. Waiting “in-line” means
that the Arduino processor spends all of its cycles constantly checking for some condition in a tight loop
(called the polling loop). For example, in almost every Arduino program you see many polling loops like
the code snippet below, or function calls, like delay() that contain implicit polling loops inside:

Listing 1: Sequential programming example (the standard Blink Arduino code)

void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

Although this approach is functional in many situations, it doesn't work very well when there are multiple
possible sources of events whose arrival times and order you cannot predict and where it is important to
handle the events in a timely manner. The fundamental problem is that while a sequential program is
waiting for one kind of event (e.g., a time delay), it is not doing any other work and is not responsive to
other events (e.g., button presses).

For these and other reasons experienced programmers turn to the long-know design strategy called
event-driven programming, which requires a distinctly different way of thinking than conventional
sequential programs. All event-driven programs are naturally divided into the application, which actually
handles the events, and the supervisory event-driven infrastructure (framework), which waits for events
and dispatches them to the application. The control resides in the event-driven framework, so from the
application standpoint, the control is inverted compared to a traditional sequential program.

Listing 2: The simplest event-driven program structure. The highlighted code
conceptually belongs to the event-driven framework.

void loop() {
 if (event1()) // event1 occurred?
 event1Handler(); // process event1 (no waiting!)
 if (event2()) // event2 occurred?
 event2Handler(); // process event2 (no waiting!)
 . . . // handle other events
}

An event-driven framework can be very simple. In fact, many projects in the Arduino Playground /
Tutorials and Resources / Protothreading, Timing & Millis section provide examples of rudimentary event-
driven frameworks. The general structure of all these rudimentary frameworks is shown in Listing 2.

The framework in this case consists of the main Arduino loop and the if statements that check for
events. Events are effectively polled during each pass through the main loop, but the main loop does not
get into tight polling sub-loops. Calls to functions that poll internally (like delay()) are not allowed,
because they would slow down the main loop and defeat the main purpose of event-driven programming
(responsiveness). The application in this case consists of all the event handler functions
(event1Handler(), event2Handler(), etc.). Again, the critical difference from sequential programming
here is that the event handler functions are not allowed to poll for events, but must consist essentially of
linear code that quickly returns control to the framework after handling each event.

This arrangement allows the event-driven program to remain responsive to all events all the time, but it is
also the biggest challenge of the event-driven programming style, because the application (the event

2 of 25

http://www.state-machine.com/arduino
http://www.arduino.cc/playground/Main/GeneralCodeLibrary#Timing_code
http://www.arduino.cc/playground/Main/GeneralCodeLibrary#Timing_code

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

handler functions) must be designed such that for each new event the corresponding event handler can
pick up where it left off for the last event. (A sequential program has much less of this problem, because it
can hang on in tight polling loops around certain places in the code and process the events in the
contexts just following the polling loops. This arrangement allows a sequential program to move naturally
from one event to the next.)

Unfortunately, the just described main challenge of event-driven programming often leads to “spaghetti”
code. The event handler functions start off pretty simple, but then if-s and else-s must be added inside
the handler functions to handle the context properly. For example, if you design a vending machine, you
cannot process the “dispense product” button-press event until the full payment has been collected. This
means that somewhere inside the dispenseProductButtonPressHandler() function you need an if-
statement that tests the payment status based on some global variable, which is set in the event handler
function for payment events. Conversely, the payment status variable must be changed after dispensing
the product or you will allow dispensing products without collecting subsequent payments. Hopefully you
see how this design quickly leads to dozens of global variables and hundreds of tests (if-s and else-s)
spread across the event handler functions, until no human being has an idea what exactly happens for
any given event, because the event-handler code resembles a bowl of tangled spaghetti. An example of
spaghetti code just starting to develop is the Stopwatch project available from the Arduino Playground.

Luckily, generations of programmers before you have discovered an effective way of solving the
“spaghetti” code problem. The solution is based on the concept of a state machine, or actually a set of
collaborating state machines that preserve the context from one event to the next using the concept of
state. The QP™ frameworks described in the next section allow you to combine the event-driven
programming paradigm with modern state machines.

1.3 QP™ Real-Time Embedded Frameworks

The rudimentary examples of event-driven programs currently
available from the Arduino Playground are very simple, but they
don't provide a true event-driven programming environment for a
number of reasons. First, the simple frameworks don't perform
queuing of events, so events can get lost if an event happens more
than once before the main loop comes around to check for this
event or when an event is generated in the loop. Second, the
primitive event-driven frameworks have no safeguards against
corruption of the global data shared among the event-handlers by
the interrupt service routines (ISRs), which can preempt the main
loop at any time. And finally, the simple frameworks are not suitable
for executing state machines due to the early filtering by event-type,
which does not leave room for state machine(s) to make decisions
based on the internal state.

QP™ real-time embedded frameworks provide a more complete event-driven software infrastructure for
programming Arduino. Currently, the QP-nano framework supports AVR-based Arduino boards (such as
Arduino UNO) and QP/C++ supports SAM-based Arduino boards (such as Arduino DUE).

Figure 2 shows the structure of the cooperative scheduler inside the QP™ frameworks, which does
provide all the essential elements for safe and efficient event-driven programming. As usual, the software
is structured in an endless event loop. The most important element of the design is the presence of
multiple event queues with a unique priority and a state machine assigned to each queue. The queues
are constantly monitored by the scheduler, which by every pass through the loop picks up the highest-
priority not-empty queue. After finding the queue, the scheduler extracts the event from the queue and
sends it to the state machine associated with this queue, which is called dispatching of an event to the
state machine.

NOTE: The event queue + state machine + a unique priority is collectively called an Active Object.

3 of 25

http://www.state-machine.com/arduino
http://www.arduino.cc/playground/Main/GeneralCodeLibrary#Timing_code
http://www.arduino.cc/playground/Code/Stopwatch

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

Figure 2: Event-driven QP framework with multiple
 event queues and state machines (Active Objects)

The design guarantees that the dispatch() operation for each state machine always runs to completion
and returns to the main Arduino loop before any other event can be processed. The scheduler applies all
necessary safeguards to protect the integrity of the events, the queues, and the scheduler itself from
corruption by asynchronous interrupts that can preempt the main loop and post events to the queues at
any time.

NOTE: The scheduler shown in Figure 2 is an example of a cooperative scheduler (called QV),
because state machines naturally cooperate to implicitly yield to each other at the end of each run-to-
completion step. The full-version of the QP framework contains also a more advanced, fully
preemptive real-time kernel called QK. However, for simplicity, the QP development kit for Arduino
currently does not provide the QV kernel.

The framework shown in Figure 2 also very easily detects the condition when all event queues are empty.
This situation is called the idle condition of the system. In this case, the scheduler calls idle processing
(specifically, the function QV_onIdle()), which puts the processor to a low-power sleep mode and can be
customized to turn off the peripherals inside the microcontroller or on the Arduino shields. After the
processor is put to sleep, the code stops executing, so the main Arduino loop stops completely. Only an
external interrupt can wake up the processor, but this is exactly what you want because at this point only
an interrupt can provide a new event to the system.

Finally, please also note that the framework shown in Figure 2 can achieve good real-time performance,
because the individual run-to-completion (RTC) steps of each state machine are typically short (execution
time counted in microseconds).

4 of 25

http://www.state-machine.com/arduino

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

1.4 QM™ Graphical Modeling Tool

QM™ (Quantum Modeler) is a free, cross-platform, graphical modeling
tool for designing and implementing real-time embedded applications
based on the QP™ state machine frameworks. QM™ is available for
Windows 32/64-bit, Linux 64-bit, and MacOSX.

QM™ provides intuitive diagramming environment for creating good
looking hierarchical state machine diagrams and hierarchical outline of
your entire application. QM™ eliminates coding errors by automatic
generation of compact C or C++ code that is 100% traceable from your
design. Please visit state-machine.com/qm for more information about
QM™.

NOTE: QM for Windows is included in the QP-Arduino download, as
described in Section 2.1.

Figure 3: The PELICAN example model opened in the QM™ modeling tool

5 of 25

http://www.state-machine.com/arduino
http://www.state-machine.com/qm

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

2 Getting Started
QP for Arduino is available for free download from GitHub. QP for Arduino is distributed in a ZIP
archive qp-<ver1>_arduino-<ver2>.zip, where <ver1> stands for the QP version and <ver2> for the
version of the Arduino software (e.g., 1.8.x). Additionally to this QP-Arduino ZIP file, you need to
download and install the standard Arduino 1.8.x (the latest as of this writing), which is available from the
Arduino website. To focus the discussion, this Application Note uses the Arduino DUE board based on
the ARM Cortex-M SAM microcontroller and the Arduino UNO board based on the Atmega328p
microcontroller (see Figure 4).

Figure 4: Arduino DUE and Arduino UNO boards

6 of 25

Reset button

SAM3X8E
microcontroller

USB Connector
to the host PC

(Programming Port)

Standard Arduino
pin-header

Reset button

Atmega328P
microcontroller

Standard Arduino
pin-header

USB Connector
to the host PC

User LED

Standard Arduino
pin-header

Arduino DUE

Arduino UNO

http://www.state-machine.com/arduino
https://github.com/QuantumLeaps/qp-arduino/releases
http://arduino.cc/en/Main/Software

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

2.1 Software Installation

NOTE: The following discussion assumes that you have downloaded and installed both the standard
Arduino software for Windows and the QP-Arduino ZIP file, as described above.

You need to unzip the qp-<ver1>_arduino-<ver2>.zip archive into your Arduino-Sketchbook folder.
To find out where your Sketchbook folder is, or to configure a different location for your Sketchbook
folder, you need to open the Arduino IDE and select File | Preferences menu (see Figure 6). The
sketchbook location will be shown at the top of the Preferences dialog box.

Figure 5: Finding/configuring Arduino-Sketchbook location

Once you identify the Sketchbook folder, you simply unzip the whole archive to your Sketchbook (see
Figure 6).

7 of 25

http://www.state-machine.com/arduino

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

Figure 6: Unzipping qp-<ver1>_arduino-<ver2>.zip into the Arduino Sketchbook.

The contents of the archive unzipped into your Sketchbook folder is shown in Listing 3.

Listing 3: Contents of the qpn-<ver1>_arduino-<ver2>.zip archive for Arduion 1.8.x

<Arduino_Sketchbook> - Your Arduino Sketchbook folder
+-doc/ - documentation
| +-AN_Event-Driven_Arduino_QP-QM.pdf – this document
| +-AN_DPP.pdf – Dining Philosopher Problem example application
| +-AN_PELICAN.pdf – PEdestrian LIght CONtrolled (PELICAN) crossing example
|
+-libraries/
| +-qpcpp_sam/ - QP/C++ library for SAM-based Arduinos
| | +-examples/
| | | +-blinky/ – Very simple “blinky” example

8 of 25

http://www.state-machine.com/arduino

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

| | | | +-blinky.ino - The Blinky sketch generated by QM
| | | | +-blinky.qm - The QM model of the Blinky application
| | | +-blinky_bsp/ – “blinky” example with board-support package (BSP)
| | | | +-blinky_bsp.ino - The Blinky-BSP sketch generated by QM
| | | | +-blinky.qm - The QM model of the Blinky application
| | | +-dpp_bsp/ – Dining Philosophers Problem (DPP) example with BSP
| | | | +-dpp_bsp.ino - The DPP-BSP sketch generated by QM
| | | | +-dpp.qm - The QM model of the DPP application
| | |
| | +-src/ - Source code for the QP/C++ library for SAM-based Arduinos
| | | +-. . .
| | +-library.properties – Properties of the QP/C++ library for the Arduino IDE
| |
| +-qpn_avr/ - QP-nano library for AVR-based Arduinos
| | +-examples/
| | | +-blinky/ – Very simple “blinky” example
| | | | +-blinky.ino - The Blinky sketch generated by QM
| | | | +-blinky.qm - The QM model of the Blinky application
| | | +-dpp/ – Dining Philosophers Problem (DPP) example
| | | | +-dpp.ino - The DPP sketch generated by QM
| | | | +-dpp.qm - The QM model of the DPP application
| | | +-pelican/ – PEdestrian LIght CONtrolled (PELICAN) crossing example
| | | | +-pelican.ino - The PELICAN sketch generated by QM
| | | | +-pelican.qm - The QM model of the PELCIAN crossing application
| | |
| | +-src/ - Source code for the QP-nano library for AVR-based Arduinos
| | | +-. . .
| | +-library.properties – Properties of the QP-nano library for the Arduino IDE
|
| +-qm/ - QM modeling tool for Windows
| | +-bin/ - QM binaries (executable and DLLs)
| | | +-qm.exe - QM executable for Windows
| | +-Resources/ - QM resources
| | | +-…
|
+-GPLv3.txt - GNU General Public License version 3
+-QP-Arduino_GPL_Exception.txt – QP GPLv3 exception for Arduino
+-README.md - README file with basic instructions

NOTE: The QP-Arduino archive contains QM for Windows only. But QM is also available for Linux
and MacOS hosts. If you wish to work on those operating systems, you will need to install QM
separately, as described at: https://www.state-machine.com/qm/gs.html. Please also see Related
Documents and References.

9 of 25

http://www.state-machine.com/arduino
https://www.state-machine.com/qm/gs.html

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

2.2 Modeling and Generating Code

Each QP example for Arduino (in the library\qpcpp_sam\examples and library\qpn_avr\examples
folders) contains a QM model, which is a file with the extension .qm., such as <Sketchbook>\
library\qpn_avr\examples\blinky\blinky.qm, see Listing 3). These models and the QM
modeling tool take Arduino programming to the next level. Instead of coding the state machines by hand,
you draw them with the free QM modeling tool, attach simple action code to states and transitions, and
you generate the complete Arduino sketch automatically—literally by a press of a button.

NOTE: You can configure the Windows File Explorer to open the .qm model file automatically with
QM by right-clicking on a .qm file and .choosing "Open with"/"Choose another app" option, after
which you select the qm.exe executable in the <Sketchbook>\qm\bin\ directory.

Figure 7: Setting the "Open with" property for the *.qm model files in Windows Explorer

2.3 Building the Examples

After you generate the code with QM, you build and upload it to the Arduino boards using the standard
Arduino IDE. Please note that you typically do NOT use the Arduino IDE to actually edit the code, there

NOTE: You typically do not use the Arduino IDE to actually edit the code manually. Therefore you
should set the Preferences (File | Preferences menu) to "Use external editor". This will cause the
Arduino IDE to automatically refresh the project files every time the code is re-generated from QM.

10 of 25

http://www.state-machine.com/arduino

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

Figure 8: Setting the "Use external editor" option in the Standard Arduino IDE

11 of 25

http://www.state-machine.com/arduino

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

Figure 9: Opening the QP/C++ Examples from the Standard Arduino IDE

NOTE: The available "Examples from Custom Libraries" displayed by the Arduino IDE depend on the
currently chosen Arduino board. For the AVR-based Arduino boards, the Arduino IDE displays
examples from the "QP-nano" library. For the SAM-based Arduino boards, the IDE displays examples
from the "QP-C++" library (see Figure above).

12 of 25

http://www.state-machine.com/arduino

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

2.4 The Dining Philosophers Problem Example

The Dining Philosophers Problem (DPP) example demonstrates multiple active objects This example is
located in the directory <Arduino_Sketchbook>\library\ qpcpp_sam\examples\dpp for SAM-based
Arduinos and <Arduino_Sketchbook>\library\ qpn_avr\examples\dpp for AVR-based Arduinos.

The classical Dining Philosopher Problem (DPP) was posed and solved originally by Edsger Dijikstra in
the 1970s and is specified as follows: Five philosophers are gathered around a table with a big plate of
spaghetti in the middle (see Figure 10). Between each two philosophers is a fork. The spaghetti is so
slippery that a philosopher needs two forks to eat it. The life of a philosopher consists of alternate periods
of thinking and eating. When a philosopher wants to eat, he tries to acquire forks. If successful in
acquiring forks, he eats for a while, then puts down the forks and continues to think. The key issue is that
a finite set of tasks (philosophers) is sharing a finite set of resources (forks), and each resource can be
used by only one task at a time.

Figure 10: Dining Philosophers Problem

You build and upload the DPP example to the Arduino UNO board the same way as the PELICAN
example. Just like in the PELICAN example, the User LED in DPP is rapidly turned on and off in the idle
loop, which appears as a constant glow to a human eye.

To see the actual output from the DPP example, you need to open a Serial Monitor by pressing the
Serial Terminal button on the Arduino IDE toolbar.

13 of 25

TeraTerm Serial
Terminal window

http://www.state-machine.com/arduino

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

2.5 The PELICAN Crossing Example (qpn_avr Library)

The PEdestrian LIght CONtrolled (PELICAN) crossing example is built and uploaded in the similar way as
the Blinky example, except you open the pelican.qm example QM model located in the directory
<Arduino_Sketchbook>\library\qpn_avr\examples\pelican.

Before you can test the example, you need to understand the how it is supposed to work. So, the
PELICAN crossing operates as follows: The crossing (see Figure 11) starts with cars enabled (green light
for cars) and pedestrians disabled (“Don't Walk” signal for pedestrians). To activate the traffic light change
a pedestrian must push the button at the crossing, which generates the PEDS_WAITING event. In
response, oncoming cars get the yellow light, which after a few seconds changes to red light. Next,
pedestrians get the “Walk” signal, which shortly thereafter changes to the flashing “Don't Walk” signal.
After the “Dont' Walk” signal stops flashing, cars get the green light again. After this cycle, the traffic lights
don't respond to the PEDS_WAITING button press immediately, although the button “remembers” that it
has been pressed. The traffic light controller always gives the cars a minimum of several seconds of
green light before repeating the traffic light change cycle. One additional feature is that at any time an
operator can take the PELICAN crossing offline (by providing the OFF event). In the “offline” mode the
cars get the flashing red light and the pedestrians get the flashing “Don't Walk” signal. At any time the
operator can turn the crossing back online (by providing the ON event).

NOTE: The design and implementation of the PELICAN crossing application, including the PELICAN
state machine, is described in the Application Note “PELICAN Crossing Application” (see Related
Documents and References).

Figure 11: Pedestrian Light CONtrolled (PELICAN) crossing

After you build and upload the software to the Arduino UNO board, the User LED should start to glow with
low intensity (not full on). In the PELICAN example, the User LED is rapidly turned on and off in the
Arduino idle loop, which appears as a constant glow to a human eye.

To see the actual output from the PELICAN example, you need to open a Serial Monitor by pressing the
Serial Terminal button on the Arduino IDE. Once the Serial Monitor opens, type 'p' to simulate pressing of
the PEDESTRIAN WALK button.

14 of 25

Signals for
pedestrians

PEDS_WALK
button

Signals for
 cars

http://www.state-machine.com/arduino

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

3 The Structure of an Arduino Sketch for QP-nano™
This section describes the structure of the Arduino "sketch" file inside the QM modeling tool and before
the code of the sketch is generated into a file on disk. Such a sketch (the .ino file) for QP™-nano
typically consists of seven groups:

1. Include files,

2. Events,

3. Active Object declarations (generated code),

4. Board Support Package (including the Arduino setup() and loop() functions),

5. Interrupts

6. QP™-nano callback functions, and

7. Active object definitions (generated code)

NOTE: An QP-nano application can be structured in many different ways and can be broken down
into multiple files. The structure described here is only a recommendation for a typical Arduino
“sketch” of low to moderate complexity.

To focus the discussion, the following Listing 4 shows the PELICAN sketch as an example (see Section
Error: Reference source not found), but the discussion applies to all sketches for QP™-nano. The
explanation sections immediately following Listing 4 discuss the specific code groups in greater detail.

NOTE: The following listing shows the sketch code as it is viewed in the QM™ modeling tool. The
actual sketch file saved by QM on disk is much bigger, because it contains all original code plus the
code generated by QM™.

Listing 4: Typical Arduino sketch for QP™-nano (file pelican.ino)

[1] #include "qpn.h" // QP-nano framework

 //==
[3] enum PelicanSignals {
 PEDS_WAITING_SIG = Q_USER_SIG,
 OFF_SIG,
 ON_SIG
 };

 //==
 // declare all AO classes...
[4] $declare${AOs::Pelican}
 //...

 // define all AO instances and event queue buffers for them...
[5] Pelican AO_Pelican;
[6] static QEvt l_pelicanQSto[10]; // Event queue storage for Pelican
 //...

 //==
 // QF_active[] array defines all active object control blocks ----------------
[7] QMActiveCB const Q_ROM QF_active[] = {
 { (QMActive *)0, (QEvt *)0, 0U },

15 of 25

http://www.state-machine.com/arduino

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

 { (QMActive *)&AO_Pelican, l_pelicanQSto, Q_DIM(l_pelicanQSto) }
 };

 //==
[8] // Board Support Package (BSP)
 // various other constants for the application…
 enum {
 BSP_TICKS_PER_SEC = 100, // number of system clock ticks in one second
 LED_L = 13, // the pin number of the on-board LED (L)
 PHILO_0_PRIO = 1, // priority of the first Philo AO
 THINK_TIME = 3*BSP_TICKS_PER_SEC, // time for thinking
 EAT_TIME = 2*BSP_TICKS_PER_SEC // time for eating
 };
 //...

 //..
[9] void setup() {

 // initialize the QF-nano framework
[10] QF_init(Q_DIM(QF_active));

 // initialize all AOs...
[11] QActive_ctor(&AO_Pelican.super, Q_STATE_CAST(&Pelican_initial));
 //...

 // initialize the hardware used in this sketch...
 pinMode(LED_L, OUTPUT); // set the LED-L pin to output

 Serial.begin(115200); // set the highest stanard baud rate of 115200 bps
 //...
 }
 //..
[12]void loop() {
 QF_run(); // run the QP-nano application
 }

 //==
 // interrupts
[13]ISR(TIMER2_COMPA_vect) {
[14] QF_tickXISR(0); // process time events for tick rate 0

 if (Serial.available() > 0) {
 switch (Serial.read()) { // read the incoming byte
 case 'p':
 case 'P':
 QACTIVE_POST_ISR((QMActive *)&AO_Pelican, PEDS_WAITING_SIG, 0U);
 break;
 //...
 }
 }
 }

 //==
 // QF callbacks...
[15]void QF_onStartup(void) {
 // set Timer2 in CTC mode, 1/1024 prescaler, start the timer ticking...

16 of 25

http://www.state-machine.com/arduino

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

 . . .

 // set the output-compare register based on the desired tick frequency
[16] OCR2A = (F_CPU / BSP_TICKS_PER_SEC / 1024U) - 1U;
 }
 //..
[17]void QV_onIdle(void) { // called with interrupts DISABLED
 // Put the CPU and peripherals to the low-power mode. You might
 // need to customize the clock management for your application,
 SMCR = (0 << SM0) | (1 << SE); // idle mode, adjust to your project
[18] QV_CPU_SLEEP(); // atomically go to sleep and enable interrupts
 }
 //..
[19]void Q_onAssert(char const Q_ROM * const file, int line) {
 // implement the error-handling policy for your application!!!
 QF_INT_DISABLE(); // disable all interrupts
 QF_RESET(); // reset the CPU
 }

 //==
 // define all AO classes (state machines)...
[20]$define${AOs::Pelican}
 //...

3.1 Include files

[1] Each sketch must include the QP-nano library (the "qpn.h" header file). (For the QP/C++ library for
the SAM-based Arduino, you need to use the "qpcpp.h" header file)

3.2 Events

[3] All event signals used by the application are enumerated. Please note that all the signal names must
end with the _SIG suffix and that the very first signal must be equal to the constant Q_USER_SIG.

3.3 Active Object declarations

[4] All active classes (subclasses of the QActive base class) in the application must be declared by
means of the "$declare${}" directives. This directive instructs the QM modeling tool to generate a
declaration of the model element specified in the parentheses, such as the AOs::Pelican active
class in this case. The active class declarations are subsequently used to define active objects
(instances of the active classes)

[5] All active objects are defined as instances of the active classes declared in step [4]. Please note that
you can instantiate more than one active object from a given class. (The DPP example illustrates
this by instantiating five AO_Philo active objects from one Philo class)

[6] Each active object instance needs an event queue, so you need to provide the properly sized queue
for each active object.

[7] The global QF_active[] array contains pointers to all active object instances and their event
queues in the system. The order of placing the active objects in the array determines their priority
(from low priorities to high priorities).

17 of 25

http://www.state-machine.com/arduino

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

3.4 Board Support Package

[8] The Board Support Package (BSP) contains all board-related code, which consists of various
constants, the board initialization, and all functions that depend on the specific peripherals used by
the application.

NOTE: Experience shows that it is very often advantageous to group all board-related functionality in
one place (in the BSP) and access it through a well-defined set of functions (called API). That way,
the state machine code can be re-used on different boards without any changes. For instance, in the
PELICAN example you might connect the signals for cars and pedestrians to different pins of the
board.

[9] The board initialization is accomplished here with standard Arduino function setup(), which
initializes the Arduino board for this application.

[19] The setup() function must initialize the QP-nano framework by calling the QF_init() function.
The argument passed to this function is the number of active objects that the framework needs to
manage, which is the dimension of the QF_active[] array.

NOTE: The utility macro Q_DIM() provides the dimension of a one-dimensional array a[] computed
as sizeof(a)/sizeof(a[0]), which is a compile-time constant.

[11] The setup() function must initialize all active object instances in the project. This initialization is
accomplished by calling the QP-nano function QActive_ctor(). For every active object instance.
The second argument of the function call is always in the form Q_STATE_CAST(&<Active-
Class>_initial), where <Active-Class> is the active class of the active object instance being
initialized.

[12] The standard Arduino function loop() simply passes control the QP-nano framework by calling
QF_run(). QF_run() runs your application and never returns.

3.5 Interrupts

An interrupt is an asynchronous signal that causes the Arduino processor to save its current state of
execution and begin executing an Interrupt Service Routine (ISR). All this happens in hardware (without
any extra code) and is very fast. After the ISR returns, the processor restores the saved state of execution
and continues from the point of interruption. You need to use interrupts to work with QP-nano. At the
minimum, you must provide the system clock tick interrupt, which allows the QP-nano framework to
handle the timeout request that active objects make. You might also want to implement other interrupts as
well.

When working with interrupts you need to be careful when you enable them to make sure that the system
is ready to receive and process interrupts. QP-nano provides a special callback function
QF_onStartup(), which is specifically designed for configuring and enabling interrupts.
QF_onStartup() is called after all initialization completes, but before the framework enters the endless
event loop.

[13] This example uses the Timer2 as the source of the periodic clock tick interrupt (Timer1 is already
used to provide the Arduino milli() service). The Interrupt Service Routine is not a regular C
function and therefore must be defined by means of the macro ISR() provided in the C compiler for
AVR.

[14] The ISR calls the QP-nano service QF_tickXISR(0), which processes all time events of the QP-
nano framework.

18 of 25

http://www.state-machine.com/arduino

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

3.6 QP-nano Callback Functions

The QP-nano framework provides a few “callback functions”, which the framework calls, but that are
application-specific, so they need to be defined in your code.

[15] The callback function QF_onStartup() is called from QF_run() right before the QP-nano
framework enters its event loop (see Figure 2). At this point, all active objects and BSP are already
initialized and ready to go, so the application is ready to accept interrupts. So, the main purpose of
the QF_onStartup() callback is to configure and start interrupts. Here the Timer2 peripheral is
configured to provide a periodic interrupt.

[16] The OCR2 register is loaded with a value that will case the desired number of interrupts per second
BSP_TICKS_PER_SEC.

[16] The QF_onCleanup() callback register is loaded with a value that will case the desired number of
interrupts per second BSP_TICKS_PER_SEC.

[17] When no events are available, the non-preemptive QV kernel invokes the platform-specific callback
function QV_onIdle(), which you can use to save CPU power, or perform any other “idle”
processing.

[18] When all event queues are empty, no active object will run, so only an external interrupt can provide
new events. Therefore, it is an ideal time to put the CPU to a low-power sleep mode, from which it
will be woken up by an external interrupt. The transition to a low-power sleep mode is accomplished
atomically by means of the QV_CPU_SLEEP() macro (provided in QP-nano port to AVR).

3.7 The Assertion Handler

As described in Chapter 6 of the book “Practical UML Statecharts in C/C++, Second Edition” [PSiCC2]
(see Related Documents and References), all QP components use internally assertions to detect errors in
the way application is using the QP services. You need to define how the application reacts in case of
assertion failure by providing the callback function Q_onAssert(). Typically, you would put the system in
fail-safe state and try to reset. It is also a good idea to log some information as to where the assertion
failed.

[19] The callback function Q_onAssert() is called when the QP framework encounters a program error.
The function gives you the last chance to control the damage, but it should not return, because the
program is not capable to continue. Typically, the last action performed in Q_onAssert() is to reset
the CPU to start from the beginning.

3.8 Define the Active Objects (Generate the State Machine Code)

In the last section of your Arduino “sketch” you need to define all your active object classes. (“Define”
means to provide the actual code). You accomplish this by means of the QM directive $define${},
which generates the code for the specified model element.

[20] Use the $define${} directive for all active objects in your project to generate code for them.

19 of 25

http://www.state-machine.com/arduino

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

4 The Structure of an Arduino Sketch for QP/C++™
(qpcpp_sam Library)
This section describes the structure of the Arduino "sketch" file inside the QM modeling tool and before
the code of the sketch is generated into a file on disk. The example sketch (dpp_bsp.ino) is a bit more
advanced than the simplified blinky.ino sketch explained for QP-nano. This is because the dpp_bsp
project consists of multiple files, including the BSP (Board Support Packate). This section discusses only
the main dpp_bsp.ino sketch, which provides the setup() and loop() Arduino functions.

NOTE: The following listing shows the sketch code as it is viewed in the QM™ modeling tool. The
actual sketch file saved by QM on disk is much bigger, because it contains all original code plus the
code generated by QM™.

Listing 5: Typical Arduino sketch for QP™/C++ (file dpp_bsp.ino)

[1] #include "qpcpp.hpp" // QP-C++ framework
 #include "dpp.hpp" // DPP application
 #include "bsp.hpp" // Board Support Package

[2] using namespace QP;

[3] Q_DEFINE_THIS_FILE

 //..
[4] void setup() {
[5] QF::init(); // initialize the framework
[6] BSP::init(); // initialize the Board Support Package

 // init publish-subscribe
[7] static QSubscrList subscrSto[MAX_PUB_SIG];
[8] QF::psInit(subscrSto, Q_DIM(subscrSto));

 // initialize event pools...
[9] static QF_MPOOL_EL(TableEvt) smlPoolSto[2*N_PHILO];
[10] QF::poolInit(smlPoolSto,
 sizeof(smlPoolSto), sizeof(smlPoolSto[0]));

 // start all active objects...

 // start Philos
[11] static QP::QEvt const *philoQueueSto[10][N_PHILO];
 for (uint8_t n = 0U; n < N_PHILO; ++n) {
[12] AO_Philo[n]->start((uint_fast8_t)(n + 1U), // priority
 philoQueueSto[n], Q_DIM(philoQueueSto[n]),
 (void *)0, 0U);
 }
 // start Table
[13] static QP::QEvt const *tableQueueSto[N_PHILO];
[14] AO_Table->start((uint_fast8_t)(N_PHILO + 1U), // priority
 tableQueueSto, Q_DIM(tableQueueSto),
 (void *)0, 0U);
 }

 //..

20 of 25

http://www.state-machine.com/arduino

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

[15] void loop() {
[16] QF::run(); // run the QF/C++ framework
 }

4.1 Include files

[1] Each sketch must include the QP/C++ library (the "qpcpp.hpp" header file), as well as other header
files from the project.

4.2 Miscellaneous Declarations

[2] The declaration using namespace QP; allows you to reference QP/C++ facilities without the QP::
prefix, which simplifies the code. (NOTE: the QP:: namespace can be useful to allow name conflicts
in larger projects).

[3] The macro using Q_DEFINE_THIS_FILE defines the file name for this module, which can be
subsequently used in QP assertions. It is typically a good idea to provide such a module name for
each implementation file.

4.3 Initialization

[4] The Arduino setup() function is used to initialize the QP/C++ framework and the services used by
this application.

[5] The QP/C++ QF::init() function must be called before any other QP/C++ service is used.

[6] The BSP::init() function initializes the board (Board Support Package)

[7] The DPP example uses the QP/C++ publish-subscribe service, so it needs to first allocate memory
for the "subscriber lists"

[8] And next, the call QF::psInit() initializes the publish-subscribe service.

[9] Also, the DPP example uses the QP/C++ dynamic events, so it needs to first allocate memory for
the "event pools"

[10] The QP/C++ QF::poolInit() initializes the "event pool" service.

4.4 Starting Active Objects

[11] Before starting any active object, the memory for the event-queue buffer must be allocated. Here
event-queue buffers are allocated for the Philo active objects.

[12] The active object start() function starts a given active object with the provided priority, event-
queue buffer, and other parameters.

[13] Event-queue buffer for the Table active object is allocated.

[14] The active object start() function starts Table active object with the provided priority, event-queue
buffer, and other parameters.

4.5 Transferring Control to the QP/C++ Framework

[15] The standard Arduino function loop() simply passes control the QP/C++ framework.

[16] The QP/C++ QF::run() function runs you application and does not return.

21 of 25

http://www.state-machine.com/arduino

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

5 Working with State Machines
The QP-nano framework allows you to work with the modern hierarchical state machines (a.k.a., UML
statecharts). For example, Figure 12 shows the HSM diagram for the PELICAN crossing.

Figure 12: The Hierarchical State Machine of the PELICAN crossing

22 of 25

operational

e / CARS_RED; PEDS_DONT_WALK

offline

e /

x /

carsEnabled

x /

pedsEnabled

x /

carsGreen

e / CARS_GREEN

x /

carsYellow

e / CARS_YELLOW

x /

pedsWalk

e / PEDS_WALK

x /

pedsFlash

e /

x /

carsGreenNoPed

e /

carsGreenInt

e /

carsGreenPedWait

e /

OFF

PEDS_WAITING

Q_TIMEOUT

PEDS_WAITING

Q_TIMEOUT

Q_TIMEOUT

Q_TIMEOUT

[(me->flashCtr&1U)==0U] /
 BSP_signalPeds(PEDS_DONT_WALK);

[else] /
 BSP_signalPeds(PEDS_BLANK);

[me->flashCtr!=0U] /
 --me->flashCtr;

[else]

Q_TIMEOUT

[(me->flashCtr&1U)==0U] /
CARS_RED; PEDS_DONT_WALK;

[else] / CARS_BLANK; PEDS_BLANK;

Q_TIMEOUT /
 me->flashCtr ^= 1U;

ON

http://www.state-machine.com/arduino

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

The biggest advantage of hierarchical state machines (HSMs) compared to the traditional finite state
machines (FSMs) is that HSMs remove the need for repetitions of actions and transitions that occur in the
non-hierarchical state machines. Without this ability, the complexity of non-hierarchical state machines
“explodes” exponentially with the complexity of the modeled system, which renders the formalism
impractical for real-life problems.

NOTE: The state machine concepts, state machine design, and hierarchical state machine
implementation in C are not specific to Arduino and are out of scope of this document. The design
and implementation of the DPP example is described in the separate Application Note “Dining
Philosophers Problem” (see Related Documents and References). The PELICAN crossing example
is described in the Application Note “PELICAN Crossing”. Both these application notes are included
in the ZIP file that contains the QP library and examples for Arduino (see Listing 3).

Once you design your state machine(s), you can code it by hand, which the QP framewrok makes
particularly straightforward, or you can use the QM tool to generate code automatically.

23 of 25

http://www.state-machine.com/arduino

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

6 Related Documents and References

Document Location

“Practical UML Statecharts
in C/C++, Second Edition”
[PSiCC2], Miro Samek,
Newnes, 2008

https://www.state-machine.com/psicc2

QP Development Kits for Arduino, Quantum Leaps,
LLC, 2011

http://www.state-machine.com/arduino

“Application Note: Dining Philosopher Problem
Application”, Quantum Leaps, LLC, 2008

http://www.state-machine.com/resources/
AN_DPP.pdf

“Application Note: PEDestrian LIght CONtrolled
(PELICAN) Crossing Application”, Quantum Leaps,
LLC, 2008

http://www.state-machine.com/resources/
AN_PELICAN.pdf

“Using Low-Power Modes in Foreground/Background
Systems”, Miro Samek, Embedded System Design,
October 2007

http://www.embedded.com/design/202103425

QP Development Kits for AVR, Quantum Leaps,
LLC, 2008

http://www.state-machine.com/avr

“QP/C++ Reference Manual”, Quantum Leaps, LLC,
2011

http://www.state-machine.com/doxygen/
qpcpp/

Free QM graphical modeling and code generation
tool, Quantum Leaps

http://www.state-machine.com/qm

“Build a Super-Simple Tasker”, by Miro Samek and
Robert Ward, ESD, 2006

http://www.eetimes.com/General/PrintView/
4025691

http://www.state-machine.com/resources/
samek06.pdf

24 of 25

http://www.state-machine.com/arduino
http://www.state-machine.com/resources/samek06.pdf
http://www.state-machine.com/resources/samek06.pdf
http://www.eetimes.com/General/PrintView/4025691
http://www.eetimes.com/General/PrintView/4025691
http://www.state-machine.com/qm
http://www.state-machine.com/doxygen/qpcpp/
http://www.state-machine.com/doxygen/qpcpp/
http://www.state-machine.com/avr
http://www.embedded.com/design/202103425
http://www.state-machine.com/resources/AN_PELICAN.pdf
http://www.state-machine.com/resources/AN_PELICAN.pdf
http://www.state-machine.com/resources/AN_DPP.pdf
http://www.state-machine.com/resources/AN_DPP.pdf
http://www.state-machine.com/arduino
https://www.state-machine.com/psicc2.htm

Copyright © 2005-2020 Quantum Leaps, LLC. All Rights Reserved.

Event-Driven Arduino Programming
with QP™ and QM™

state-machine.com/arduino

7 Contact Information

Quantum Leaps, LLC
103 Cobble Ridge Drive
Chapel Hill, NC 27516
USA

WEB : http://www.state-machine.com
Support:sourceforge.net/projects/qpc/forums/forum/668726

Arduino Project

homepage:
http://arduino.cc

25 of 25

http://www.state-machine.com/arduino
http://arduino.cc/
http://sourceforge.net/projects/qpc/forums/forum/668726
http://www.state-machine.com/

	1 Introduction
	1.1 About Arduino
	1.2 Event-Driven Programming with Arduino
	1.3 QP™ Real-Time Embedded Frameworks
	1.4 QM™ Graphical Modeling Tool

	2 Getting Started
	2.1 Software Installation
	2.2 Modeling and Generating Code
	2.3 Building the Examples
	2.4 The Dining Philosophers Problem Example
	2.5 The PELICAN Crossing Example (qpn_avr Library)

	3 The Structure of an Arduino Sketch for QP-nano™
	3.1 Include files
	3.2 Events
	3.3 Active Object declarations
	3.4 Board Support Package
	3.5 Interrupts
	3.6 QP-nano Callback Functions
	3.7 The Assertion Handler
	3.8 Define the Active Objects (Generate the State Machine Code)

	4 The Structure of an Arduino Sketch for QP/C++™ (qpcpp_sam Library)
	4.1 Include files
	4.2 Miscellaneous Declarations
	4.3 Initialization
	4.4 Starting Active Objects
	4.5 Transferring Control to the QP/C++ Framework

	5 Working with State Machines
	6 Related Documents and References
	7 Contact Information

