
QP state machine framework pattern

Design Pattern 
Transition to History

Document Revision C
October 2013

Copyright © Quantum Leaps, LLC

www.quantum-leaps.com 
www.state-machine.com 

http://www.state-machine.com/
http://www.quantum-leaps.com/


Copyright © Quantum Leaps, LLC. All Rights Reserved.

The following excerpt comes from the book Practical 
UML Statecharts in C/C++, 2nd Ed: Event-Driven Pro-
gramming for Embedded Systems by Miro Samek, 
Newnes 2008.

ISBN-10: 0750687061 
ISBN-13: 978-0750687065 

Copyright © Miro Samek, All Rights Reserved.
Copyright © Quantum Leaps, All Rights Reserved.

Transition to History

Intent 
Transition out of a composite state, but remember the most recent active substate so you can return to that 
substate later.

Problem
State transitions defined in high-level composite states often deal with events that require immediate attention; 
however, after handling them, the system should return to the most recent substate of the given composite sate.

For example, consider a simple toaster oven. Normally the toaster operates with its door closed. However,
at any time, the user can open the door to check the food or to clean the oven. Opening the door is an interruption;
for safety reasons, it requires shutting the heater off and lighting an internal lamp. However, after closing the 
door, the toaster oven should resume whatever it was doing before the door was opened. Here is the problem: 
What was the toaster doing just before the door was opened? The state machine must remember the most recent 
state configuration that was active before opening the door in order to restore it after the door is closed again. 

UML statecharts address this situation with two kinds of history pseudostates: shallow history and deep 
history (see Section 2.3.12 in Chapter 2). This toaster oven example requires the deep history mechanism 
(denoted as the circled H* icon in Figure 5.11). The QEP event processor does not support the history mechanism 
automatically for all states because it would incur extra memory and performance overheads. However, it is easy 
to add such support for selected states. 

1 of 6



Copyright © Quantum Leaps, LLC. All Rights Reserved.

Design Pattern
Transition to History

state-machine.com/resources/appnotes.php

Solution 
Figure 5.11 illustrates the solution, which is to store the most recently active leaf substate of the “doorClosed” 
state in the dedicated data member doorClosed_history (abbreviated to history in Figure 5.11). 
Subsequently, the transition to history of the “doorOpen” state (transition to the circled H*) uses the attribute as 
the target of the transition.

Figure 5.12 The Transition to History state pattern.

Sample Code 
The sample code for the Transition to History state pattern is found in the directory 
qpc\examples\win32\mingw\history\. You can execute the application by double-clicking on the file 
HISTORY.EXE file in the dbg\ subdirectory. Figure 5.13 shows the output generated by the HISTORY.EXE 
application. The application prints the actions as they occur. The legend of the key-strokes at the top of the screen 
describes how to generate events for the application. For example, you open the door by typing ‘o’, and close the 
door by typing ‘c’.

Figure 5.13 Annotated output generated by   HISTORY.EXE  .  

Listing 5.13 The Ultimate Hook sample code (file   hook.c  ).  

2 of 6

http://www.state-machine.com/resources/appnotes.php


Copyright © Quantum Leaps, LLC. All Rights Reserved.

Design Pattern
Transition to History

state-machine.com/resources/appnotes.php

 (1) #include "qep_port.h"

     /*..........................................................................*/
     enum ToasterOvenSignals {
         OPEN_SIG = Q_USER_SIG,
         CLOSE_SIG,
         TOAST_SIG,
         BAKE_SIG,
         OFF_SIG,
         TERMINATE_SIG                              /* terminate the application */
     };
     /*..........................................................................*/
     typedef struct ToasterOvenTag {
         QHsm super;                                         /* derive from QHsm */
 (2)     QStateHandler doorClosed_history;    /* history of the doorClosed state */
     } ToasterOven;

     void ToasterOven_ctor(ToasterOven *me);                     /* default ctor */

     QState ToasterOven_initial   (ToasterOven *me, QEvent const *e);
     QState ToasterOven_doorOpen  (ToasterOven *me, QEvent const *e);
     QState ToasterOven_off       (ToasterOven *me, QEvent const *e);
     QState ToasterOven_heating   (ToasterOven *me, QEvent const *e);
     QState ToasterOven_toasting  (ToasterOven *me, QEvent const *e);
     QState ToasterOven_baking    (ToasterOven *me, QEvent const *e);
     QState ToasterOven_doorClosed(ToasterOven *me, QEvent const *e);
     QState ToasterOven_final     (ToasterOven *me, QEvent const *e);

     /*..........................................................................*/
     void ToasterOven_ctor(ToasterOven *me) {                    /* default ctor */
         QHsm_ctor(&me->super, (QStateHandler)&ToasterOven_initial);
     }

     /* HSM definitio -----------------------------------------------------------*/
     QState ToasterOven_initial(ToasterOven *me, QEvent const *e) {
         (void)e;               /* avoid compiler warning about unused parameter */
 (3)     me->doorClosed_history = (QStateHandler)&ToasterOven_off;
         return Q_TRAN(&ToasterOven_doorClosed);
     }
     /*..........................................................................*/
     QState ToasterOven_final(ToasterOven *me, QEvent const *e) {
         (void)me;              /* avoid compiler warning about unused parameter */
         switch (e->sig) {
             case Q_ENTRY_SIG: {
                 printf("-> final\nBye!Bye!\n");
                 _exit(0);
                 return Q_HANDLED();
             }
         }
         return Q_SUPER(&QHsm_top);
     }
     /*..........................................................................*/
     QState ToasterOven_doorClosed(ToasterOven *me, QEvent const *e) {
         switch (e->sig) {
             case Q_ENTRY_SIG: {
                 printf("door-Closed;");
                 return Q_HANDLED();

3 of 6

http://www.state-machine.com/resources/appnotes.php


Copyright © Quantum Leaps, LLC. All Rights Reserved.

Design Pattern
Transition to History

state-machine.com/resources/appnotes.php

             }
             case Q_INIT_SIG: {
                 return Q_TRAN(&ToasterOven_off);
             }
             case OPEN_SIG: {
                 return Q_TRAN(&ToasterOven_doorOpen);
             }
             case TOAST_SIG: {
                 return Q_TRAN(&ToasterOven_toasting);
             }
             case BAKE_SIG: {
                 return Q_TRAN(&ToasterOven_baking);
             }
             case OFF_SIG: {
                 return Q_TRAN(&ToasterOven_off);
             }
             case TERMINATE_SIG: {
                 return Q_TRAN(&ToasterOven_final);
             }
         }
         return Q_SUPER(&QHsm_top);
     }
     /*..........................................................................*/
     QState ToasterOven_off(ToasterOven *me, QEvent const *e) {
         (void)me;              /* avoid compiler warning about unused parameter */
         switch (e->sig) {
             case Q_ENTRY_SIG: {
                 printf("toaster-Off;");
 (4)             me->doorClosed_history = (QStateHandler)&ToasterOven_off;
                 return Q_HANDLED();
             }
         }
         return Q_SUPER(&ToasterOven_doorClosed);
     }
     /*..........................................................................*/
     QState ToasterOven_heating(ToasterOven *me, QEvent const *e) {
         (void)me;              /* avoid compiler warning about unused parameter */
         switch (e->sig) {
             case Q_ENTRY_SIG: {
                 printf("heater-On;");
                 return Q_HANDLED();
             }
             case Q_EXIT_SIG: {
                 printf("heater-Off;");
                 return Q_HANDLED();
             }
         }
         return Q_SUPER(&ToasterOven_doorClosed);
     }
     /*..........................................................................*/
     QState ToasterOven_toasting(ToasterOven *me, QEvent const *e) {
         (void)me;              /* avoid compiler warning about unused parameter */
         switch (e->sig) {
             case Q_ENTRY_SIG: {
                 printf("toasting;");
 (5)             me->doorClosed_history = (QStateHandler)&ToasterOven_toasting;
                 return Q_HANDLED();

4 of 6

http://www.state-machine.com/resources/appnotes.php


Copyright © Quantum Leaps, LLC. All Rights Reserved.

Design Pattern
Transition to History

state-machine.com/resources/appnotes.php

             }
         }
         return Q_SUPER(&ToasterOven_heating);
     }
     /*..........................................................................*/
     QState ToasterOven_baking(ToasterOven *me, QEvent const *e) {
         (void)me;              /* avoid compiler warning about unused parameter */
         switch (e->sig) {
             case Q_ENTRY_SIG: {
                 printf("baking;");
 (6)             me->doorClosed_history = (QStateHandler)&ToasterOven_baking;
                 return Q_HANDLED();
             }
         }
         return Q_SUPER(&ToasterOven_heating);
     }
     /*..........................................................................*/
     QState ToasterOven_doorOpen(ToasterOven *me, QEvent const *e) {
         switch (e->sig) {
             case Q_ENTRY_SIG: {
                 printf("door-Open,lamp-On;");
                 return Q_HANDLED();
             }
             case Q_EXIT_SIG: {
                 printf("lamp-Off;");
                 return (QState)0;
             }
             case CLOSE_SIG: {
 (7)             return Q_TRAN(me->doorClosed_history); /* transition to HISTORY */
             }
         }
         return Q_SUPER(&QHsm_top);
     }

(1) Every QEP application needs to include qep_port.h (see Section 4.8 in Chapter 4).
(2) The ToasterOven state machine declares the history of the “doorClosed” state as a data member.
(3) The doorClosed_history variable is initialized in the top-most initial transition according to the 

diagram in Figure 5.12.
(4-6) The entry actions to all leaf substates of the “doorClosed” state record the history of entering those 

substates in the doorClosed_history variable. A leaf substate is a substate that has no further 
substates (see Section 2.3.8 in Chapter 2).

(7) The transition to history is implemented with the standard macro Q_TRAN(), where the target of the 
transition is the doorClosed_history variable.

Consequences 
The Transition to History state pattern has the following consequences:

• It requires that a separate QHsmState pointer to state-handler function (history variable) is 
provided for each composite state to store the history of this state.

• The transition to history pseudostate (both deep and shallow history) is coded with the regular 
Q_TRAN() macro, where the target is specified as the history variable. 

5 of 6

http://www.state-machine.com/resources/appnotes.php


Copyright © Quantum Leaps, LLC. All Rights Reserved.

Design Pattern
Transition to History

state-machine.com/resources/appnotes.php

• Implementing the deep history pseudostate (see Section 2.3.12 in Chapter 2) requires explicitly 
setting the history variable in the entry action of each leaf substate of the corresponding composite 
state. 

• Implementing the shallow history pseudostate (see Section 2.3.12 in Chapter 2) requires 
explicitly setting the history variable in each exit action from the desired level. For example, shallow 
history of the “doorClosed” state in Figure 5.12 requires setting doorClosed_history to 
&ToasterOven_toasting in the exit action from “toasting”, to &ToasterOven_baking in 
the exit action from “baking”, and so on for all direct substates of “doorClosed”.

• You can explicitly clear the history of any composite state by resetting the corresponding history 
variable. 

Known Uses
As a part of the UML specification, the history mechanism qualifies as a widely used pattern. The ROOM method
[Selic+ 94] describes a few examples of transitions to history in real-time systems, whereas Horrocks [Horrocks 
99] describes how to apply the history mechanism in the design of GUIs. 

Summary
As Gamma and colleagues [GoF 95] observe: “One thing expert designers know not to do is solve every problem 
from first principles.” Collecting and documenting design patterns is one of the best ways of capturing and 
disseminating expertise in any domain, not just in software design. 

State patterns are specific design patterns that are concerned with optimal (according to some criteria) 
ways of structuring states, events, and transitions to build effective state machines. In this chapter, I described just
five such patterns and a few useful idioms for structuring state machines. The first two patterns, Ultimate Hook 
and Reminder, are at a significantly lower level than the rest, but they are so fundamental and useful that they 
belong in every state machine designer’s bag of tricks.

The other three patterns (Deferred Event, Orthogonal Component, and Transition to History) are 
alternative, lightweight realizations of features supported natively in the UML state machine package [OMG 07]. 
Each one of these state patterns offers significant performance and memory savings compared to the full UML-
compliant realization.

6 of 6

http://www.state-machine.com/resources/appnotes.php

