
 state-machine.com© 2016, Quantum Leaps

In this presentation I'd like to talk about a better way to build real-time
embedded software that goes beyond the traditional Real-Time Operating
System (RTOS).

Even though the ideas I'll discuss today are certainly not new, the “reactive
approach” that I'll present has been only recently gaining popularity as
software developers from different industries independently re-discover better
ways of designing concurrent software. These best practices universally favor
event-driven, asynchronous, non-blocking, encapsulated active objects (a.k.a.
actors) instead of sequential programming based on traditional RTOS.

This talk is based on my 15 years of experience with developing and refining
active object frameworks for deeply embedded real-time systems.



 state-machine.com© 2016, Quantum Leaps

My talk should take about 40 minutes, followed by 10 minutes of
demonstrations and 10 minutes for questions and answers.

One comment, to avoid any confusion from the beginning: when I say RTOS, I
mean a small real-time kernel designed for deeply embedded systems, such
as single-chip, single-core microcontrollers. I specifically don't mean here
embedded Linux, embedded Windows, or other such big OSes.

An example of a representative hardware that I have in mind for this talk is
shown in the picture. Here, in a dimple of a golf ball, you can see a complete
microcontroller in a silicon-size package. The chip contains the 32-bit ARM
Cortex-M core, an impressive set of peripherals as well as several kilobytes of
static-RAM for data and few hundred kilobytes of flash-ROM for code.

If you think that it's too small for any significant complexity, let me tell you from
experience that this is plenty to shoot yourself in the foot.

BTW, worldwide shipments of microcontrollers reach some 20 billion units a
year.



 state-machine.com© 2016, Quantum Leaps

Smaller embedded systems are typically designed as a “superloop” that runs
on a bare-metal CPU, without any underlying operating system. This is also the
most basic structure that all embedded programmers learn in the beginning of
their careers.

For example, here you can see a superloop adapted from the basic Arduino
Blink Tutorual. The code is structured as an endless “while (1)” loop, which
turns an LED on, waits for 1000 ms, turns the LED off, and waits for another
1000ms. All this results in blinking the LED. The main characteristics of this
approach is that the code often waits in-line for various conditions, for example
a time delay. “In-line” means that the code won't proceed until the specified
condition is met. Programming that way is called sequential programming.

The main problem with this sequential approach is that while waiting for one
kind of event, the “superloop” is unresponsive to any other events, so it is
difficult to add new events to the loop.

Of course, the loop can be modified to wait for ever shorter periods of time to
check for various conditions more often. But adding new events to the loop
becomes increasingly difficult and often causes an upheaval to the whole
structure and timing of the entire loop.



 state-machine.com© 2016, Quantum Leaps

An obvious solution to the unresponsiveness of a single superloop is to allow
multiple superloops to run on the same CPU. Multiple superloops can wait for
multiple events in parallel.

And this is exactly what a Real-Time Operating System (RTOS) allows you to
do. Through the process of scheduling and switching the CPU, which is called
multitasking or multithreading, an RTOS allows you to run multiple superloops
on the same CPU. The main job of the RTOS is to create an illusion that each
superloop, called now a thread, has the entire CPU all to itself.

For example, here you have two threads: one for blinking an LED and another
for sounding an alarm when a button is pressed.

As you can see, the code for the Blink thread is really identical to the Blink
superloop, so it is also sequential and structured as an endless while(1) loop.
The only difference now is that instead of the polling delay() function, you use
RTOS_delay(), which is very different internally, but from the programming
point of view it performs exactly the same function.



 state-machine.com© 2016, Quantum Leaps

How does the RTOS achieve multitasking? Well, each thread in an RTOS has
a dedicated private context in RAM, consisting of a private stack area and a
thread-control-block (TCB).

The context for every thread must be that big, because in a sequential code
like that, the context must remember the whole nested function call tree and
the exact place in the code, that is, the program counter. For example, in the
Blink thread, the contexts of the two calls to RTOS_delay(), will have identical
call stack, but will differ in the values of the program counter (PC).

Every time a thread makes a blocking call, such as RTOS_delay() the RTOS
saves CPU registers on that thread's stack and updates it's TCB. The RTOS
then finds the next thread to run in the process called scheduling. Finally, the
RTOS restores the CPU registers from that next thread's stack. At this point the
next thread resumes the execution and becomes the current thread.

The whole context-switch process is typically coded in CPU-specific assembly
language, and takes a few microseconds to complete.



 state-machine.com© 2016, Quantum Leaps

 time

context switch

context switch

(6b)

pr
io

rit
y

Thread-B blocked

Thread-A blockedThread-A runs Thread-A runsK

Thread-B blocked

RTOS kernel

Thread makes a
blocking call, e.g,
RTOS_delay()

Clock tick
interrupt

ISR K RTOS kernel

Thread-B runs

For example, a call to RTOS_delay() from Thread-A results in a context switch
to Thread-B.

Thread-A switched “away” in this process stops consuming any CPU cycles, so
it becomes efficiently blocked.

Instead, the CPU cycles that a primitive superloop would waste in a polling loop
go to the other Thread-B that has something useful to do.

Please note that in a single CPU system, for any given thread to run, all other
threads must be blocked. This means that blocking is quite fundamental to
multitasking.

Finally, note that a context switch can be also triggered by an interrupt, which is
asynchronous to the execution of threads. For example, unblocking of Thread-
A and blocking of Thread-B, can be triggered by the system clock tick interrupt.
An RTOS kernel in which interrupts can trigger context switch is called a
preemptive RTOS.



 state-machine.com© 2016, Quantum Leaps

Compared to a “superloop”, an RTOS kernel brings a number of very
important benefits:

1. It provides a “divide-and-conquer” strategy, because it allows you to
partition your application into multiple threads.
Ÿ Each one of these threads is much easier to develop and maintain than
one “kitchen sink” superloop

2. Threads that wait for events are efficiently blocked and don't consume CPU
cycles. This is in contrast to wasteful polling loops often used in the superloop.

3. Certain schedulers, most notably preemptive, priority-based schedulers,
can execute your applications such that the timing of high-priority threads can
be insensitive to changes in low-priority threads (if the threads don't share
resources). This is because under these conditions, high-priority threads can
always preempt lower-priority threads. This enables you to apply formal timing
analysis methods, such as Rate Monotonic Analysis (RMA), which can
guarantee that (under certain conditions) all your higher-priority threads will
meet their deadlines.



 state-machine.com© 2016, Quantum Leaps

Multiple, dedicated threads are great and bring a quantum leap of
improvement compared to a kitchen-sink “superloop”, but the problems begin
when the threads need to synchronize and communicate with each other.

Generally, threads synchronize their activities by blocking and unblocking
each other by means of such mechanisms as semaphores, event flags, or
message queues. But this causes additional blocking, which reduces the
responsiveness of the existing threads and forces developers to create more
threads, which ultimately leads to architectural decay

Also any form of shared-state communication among threads requires
applying mutual exclusion to avoid race conditions around the shared
resources. But using mutual exclusion leads to additional blocking of threads,
which can cause the whole slew of second-order problems, such as thread
starvation, deadlock, or priority inversion. Any of these problems might lead to
missed deadlines, which means failure in a real-time system.

Speaking of failures, they are typically subtle, intermittent, and notoriously
hard to reproduce, isolate, and fix. Such problems are the worst kind you can
possibly have in your software.



 state-machine.com© 2016, Quantum Leaps

For all these reasons, expert real-time programmers have learned to be very
weary of blocking. Instead, experts came up with the following best
practices:

1. Don't block inside your code. Instead communicate among threads
asynchronously via event objects
Ÿ This makes threads run truly independently, without blocking on each
other

2. Don't share any data or resources among threads. Keep data and
resources encapsulated inside threads (“share-nothing” principle) and
instead use events to share information

3. Organize your threads as “message pumps” (event queue + event loop)

In other words, these best practices combine multithreading with event-driven
programming.



 state-machine.com© 2016, Quantum Leaps

Perhaps the easiest way to understand these best practices is to see how
they can be implemented with a traditional RTOS:
ᴞ You start off by defining your own basic event data type, which carries the

event signal and event parameters. For example, an event with signal
ADC_COMPLETE tells you that ADC conversion has just completed, and in
the event parameter it can carry the numeric value produced by the ADC.

ᴞ Each thread owns an event queue (or a message queue) capable of storing
your event objects

ᴞ The threads communicate and synchronize only by posting events to their
queues. Specifically, the threads are not allowed to share any data or
resources, which are private and strictly encapsulated.

ᴞ Event posting is asynchronous meaning that threads don't wait until the
event is processed. They just drop it into a queue and move on.

ᴞ The thread code is organized as a “message pump”
Ÿ a thread blocks only when its queue is empty, and does not block
anywhere in the event-handler code
Ÿ such a “message pump” naturally implements the Run-to-Completion
event processing semantics, which simply means that the thread must
necessarily finish processing of one event before it can start processing the
next event. This eliminates any concurrency hazards within a thread itself.






































